Movilidad Sostenible: Semana Europea de la Movilidad 2017


La movilidad representa hoy en día uno de los principales retos para las ciudades -donde vive más del 70% de la población europea- por los grandes problemas asociados a lo que éstas se enfrentan: congestión del tráfico, mala calidad del aire, ruido, elevadas emisiones de CO2… Su sostenibilidad es uno de los grandes objetivos de las instituciones públicas a todos los niveles e implica garantizar que nuestros sistemas de transporte respondan a las necesidades económicas, sociales y ambientales, reduciendo al mínimo sus repercusiones negativas.

A través de la Dirección General de Movilidad y Transporte, la Comisión Europea promueve la movilidad sostenible. Las principales herramientas que proporciona para copntribuir a una planificación sostenible de la movilidad urbana son el observatorio Eltis, que facilita el intercambio de información, conocimientos y experiencias en el ámbito de la movilidad urbana sostenible; el programa de demostración CIVITAS; las fuentes de financiación de proyectos de investigación o planes de actuación sobre movilidad; o la plataforma EPOMM, una red que conecta a las entidades de los gobiernos de países europeos dedicados a la gestión de la movilidad. En julio de 2016 la Comisión adoptó la Estrategia Europea para la Movilidad de Bajas Emisiones, que servirá como marco para sus actuaciones en materia de movilidad eficiente. En España tenemos como marco de referencia la Estrategia Española de Movilidad Sostenible (EEMS), aprobada en 2009, cuyas directrices se estructuran en cinco áreas: territorio, planificación del transporte y sus infraestructuras, cambio climático y reducción de la dependencia energética, calidad del aire y ruido, seguridad y salud, y gestión de la demanda. También disponemos de herramientas como el Observatorio de la Movilidad Metropolitana (OMM), un espacio de análisis con el objetivo de reflejar la contribución del transporte público a la mejora de la calidad de vida y del desarrollo sostenible en las ciudades.

Del 16 al 22 de septiembre se está celebrando la Semana Europea de la Movilidad 2017 (EUROPEANMOBILITYWEEK, EMW), campaña que pretende fomentar la movilidad sostenible sensibilizando a los responsables políticos y a los ciudadanos sobre los beneficios del uso del transporte público, la bicicleta y los viajes a pie y las consecuencias del uso irracional del coche, tanto para la salud pública como para el medio ambiente. La iniciativa, que se celebra anualmente desde 2002, tiene su origen en el evento ¡La ciudad, sin mi coche!, que surgió en 1999 en Fracia e Italia, y cuenta desde el año 2000 con el apoyo de la Comisión Europea. Tanto instituciones públicas y ayuntamientos como organizaciones no gubernamentales, empresas o escuelas pueden participar y organizar actividades. Cada año, el Premio de la Semana Europea de la Movilidad (EMW Award) y el premio al Plan de Movilidad Urbana Sostenible (Sustainable Urban Mobility Planning, SUMP Award) recompensan las actuaciones de los ayuntamientos encaminadas a promocionar y mejorar la movilidad inteligente, limpia, compartida y sana. La versión española de los premios incluye además a organizaciones, instituciones, empresas y medios de comunicación.

Ell lema de este año, “Movilidad limpia, compartida e inteligente”, reconoce que la tecnología puede mediar en el proceso de cambio de comportamiento hacia la sostenibilidad, particularmente en el contexto de las ciudades inteligentes (Klecha et al. 2018). Con el eslogan “Compartir te lleva más lejos” se pretende fomentar la movilidad compartida, un “modelo emergente, inteligente e innovador de transporte con gran potencial para reducir el número de vehículos” (según Bulc, Comisaria de transportes) y mejorar la calidad de vida que se está extendiendo rápidamente en los centros urbanos a través de la introducción del uso compartido de bicicletas, vehículos o incluso aparcamiento.

En la iniciativa están inscritos más de 2400 municipios de 50 países, incluyendo algunos no europeos: Argentina, Brasil, México, Japón, Corea del Sur y Estados Unidos. Austria y España son los países con mayor número de paticipantes, 579 y 465 ayuntamientos comprometidos, respectivamente. La Celeste es el nombre que aglutina los eventos organizados para la semana de la movilidad en Madrid, que incluyen festivales, peatonalizaciones, rutas, exposiciones, talleres y juegos donde aprender, celebrar y compartir un Madrid más respirable y habitable. Principales eventos: PARK(ing) Day, Festibal con B de Bici, Pasea Madrid, Día sin coches.

Referencias:

-       Klecha L., Gianni F. (2018) Designing for Sustainable Urban Mobility Behaviour: A Systematic Review of the Literature. In: Mealha Ó., Divitini M., Rehm M. (eds) Citizen, Territory and Technologies: Smart Learning Contexts and Practices. SLERD 2017. Smart Innovation, Systems and Technologies, vol 80. Springer

Etiquetas:
Categorias: Eficiencia, Energía (general), General

Un nuevo informe dice que el bioetanol de primera generación es tan sostenible como el de segunda generación


El informe  “Sustainable Fist and Second Generation Bioethanol for Europe”, realizado por Nova Institute GmBH  y encargado  por CropEnergies AG muestra que bioetanol de primera generación es tan ventajoso como bioetanol de segunda generación para una estrategia climática factible

Autor: María José Negro -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT

El informe será presentado y debatido por primera vez el próximo 26 de septiembre en Bruselas. En el contexto de los debates sobre el proyecto de Directiva de la UE sobre Energías Renovables (RED II), la conferencia proporcionará una plataforma para el debate sobre las ventajas y desventajas del bioetanol de primera y segunda generación.  La conferencia examinará si las propuestas RED II cumplen con el mandato de la Comisión Europea de reducir las emisiones de gases de efecto invernadero y contribuir a la descarbonización del transporte

Los resultados, según  Nova Institute, muestran claramente que la discriminación sistemática contra los biocombustibles de primera generación de la actual propuesta de la Comisión no está basada, en modo alguno, en pruebas científicas.  En el camino hacia una Europa respetuosa con el clima, los biocombustibles producidos a partir de cualquier tipo de materia prima ofrecen ventajas en términos de reducciones de emisiones de GEI y según la opinión de los autores del informe, deberían formar parte indiscriminadamente de una estrategia transitoria viable hacia la movilidad de bajas emisiones, siempre que se adhieran a criterios de sostenibilidad.

En el estudio se seleccionan 12 criterios principales para evaluar la sostenibilidad del bioetanol de primera y segunda generación, tales como la huella de gases de efecto invernadero, costos de reducción de gases de efecto invernadero, eficiencia de uso de tierra, seguridad alimentaria, subproductos ricos en proteína, empleo, desarrollo rural, y nivel de vida de los agricultores y silvicultores, cambio uso de la tierra (LUC / iLUC), disponibilidad e infraestructura, trazabilidad de las materias primas. El análisis muestra que todas las materias primas investigadas para la producción de bioetanol ofrecen importantes fortalezas, pero también debilidades en términos de sostenibilidad. Los autores recomiendan mantener el 7% existente para los combustibles basados en cultivos alimentarios y no reducir aún más la proporción de combustibles de primera generación en la REDII.

http://bio-based.eu/sustainablefuels/

Etiquetas:
Categorias: Actualidad (Noticias), Biocombustibles, Eficiencia, Energía (general)

RENOVAGAS: Almacenar electricidad renovable en gas natural sintético en España


Autor: Rufino Navarro-Instituto de Catálisis y Petroleoquímica (CSIC)

El despliegue de las energías renovables para cumplir con  la necesaria descarbonización de los  sistemas energéticos va a necesitar incrementar la flexibilidad del sistema para ser capaz de armonizar las discrepancias entre la producción  y demanda debido a la variabilidad en la generación renovable (solar y eólica fundamentalmente).  La mejora en la flexibilidad del sistema de producción y uso de energía renovable se puede conseguir mediante la instalación de sistemas de almacenamiento de energía que puedan modular y estabilizar la red. Una de las fórmulas para el almacenamiento de los excedentes energéticos renovables con mayor capacidad y potencia de almacenamiento es mediante la generación de vectores energéticos secundarios (como el hidrógeno o el metano) que se puedan almacenar en las redes gasistas existentes. En este sentido, aparece la tecnología “Power to Gas” (PtG) que permite almacenar la electricidad convirtiéndola en hidrógeno mediante electrolisis de agua que se utiliza para producir metano sintético mediante la hidrogenación de CO2 (ec 1) procedente de cualquier origen  (industrial, biogas,…):

El concepto “Power to Gas” abre un campo de posibilidades interesante para el almacenamiento de energías renovables y hasta ahora no había sido afrontado en España a nivel industrial. Por esta razón y con el fin de demostrar la viabilidad de la implantación de la tecnología PtG en España se ha desarrollado el proyecto RENOVAGAS.  El proyecto RENOVAGAS ha sido llevado a cabo por un consorcio de empresas y centros de investigación españoles (Enagás, FCC-Aqualia, Abengoa Hidrógeno, Gas Natural Fenosa, Tecnalia, CSIC y el Centro Nacional del hidrógeno) y financiado por el MINECO en su convocatoria Retos Colaboración de 2014. El proyecto RENOVAGAS tenía como objetivo el desarrollo y operación de una planta de producción de gas natural sintético (GNS) de 15 kW a partir de la producción electrolítica de hidrógeno mediante energías renovables y su metanación a través de la combinación con una corriente de biogás, de manera que el gas natural obtenido fuera totalmente renovable (Figura 1). Dentro de los objetivos del proyecto también se incluyen el diseño del escalado a una planta de 250 kW así como un estudio sobre la implantación de la tecnología en España.

Figura 1- Esquema producción gas natural sintético a partir del concepto “Power to Gas” (PtG)

El proyecto RENOVAGAS  comenzó su actividad en Septiembre de 2014 y ha finalizado recientemente con éxito, alcanzando el proyecto los principales hitos técnicos planteados en el mismo:

  1. Optimización del proceso de producción de hidrógeno utilizando procesos electrolíticos eficientes y desarrollando un control avanzado de su integración eléctrica con fuentes variables, como son la energía solar y la eólica
  2. Desarrollo de un diseño específico de un reactor de metanación (multicanales) con capacidad de operación en condiciones variables y con  transferencia de masa y de calor optimizadas
  3. Desarrollo de nuevos catalizadores de metanación con  actividad, selectividad y resistencia a la desactivación superiores a los catalizadores industriales convencionales basados en Ni.

Las materializaciones resultantes  de los diferentes hitos técnicos del proyecto se han integrado en un demostrador de 15 kW eléctricos como el mostrado en la Figura 2.

Figura 2. Diseño del demostrador (15 kW) para la producción de gas sintético a partir de la metanación de biogas

El funcionamiento y operatividad del demostrador se han validado en condiciones reales en la metanación de una corriente de biogás (65% CH4 y 35% CO2) producido en una planta de tratamiento de aguas residuales de la empresa FCC-Aqualia (Figura 3).  Los resultados en condiciones reales han confirmado la capacidad del prototipo para la producción de hasta 2Nm3/h de gas natural sintético que ha sido analizado por la empresa de transporte de gas natural, Enagás, asegurando el cumplimiento de la calidad de ese gas natural sintético con las especificaciones de la red gasista.

Figura 3. Imagen del demostrador (15kW)  instalado en la planta de tratamiento de aguas de FCC-Aqualia

A partir de los resultados experimentales obtenidos en el demostrador, se ha abordado también el diseño conceptual y la ingeniería de detalle para escalar el sistema a 250 kW y se ha hecho un estudio de prospectiva económica e implantación de la tecnología PtG en España. El proyecto RENOVAGAS ha permitido demostrar la viabilidad técnica de una tecnología de notable interés para el almacenamiento de electricidad renovable de forma flexible y modulable que permite su operación bajo condiciones variables de operación.

Etiquetas:
Categorias: Almacenamiento de energía, Eficiencia, Energía (general)

El primer experimento con luz eléctrica en España


Autor: R. Escudero-Cid (Universidad Autónoma de Madrid)

En la noche del 2 de abril de 1851, el científico gallego Antonio Casares Rodríguez, procedió a la iluminación mediante un arco voltaico de un edificio público por primera vez en España en Santiago de Compostela, en el claustro del antiguo edificio central de la Universidad (hoy Facultad de Geografía e Historia) [1]. La realización de esta demostración pública en esta ciudad supuso un gran efecto desde el punto de vista educativo y divulgativo permitiendo a la sociedad compostelana de aquella época ser partícipe de un hito histórico y un gran acercamiento a la ciencia.

 La preparación científica y tecnológica no eran inaccesibles a otros científicos españoles de la época, pero los conocimientos específicos, los elementos materiales y la determinación que se precisaban reunir para llevar adelante el experimento no estaban al alcance de muchos. Pero estamos hablando de un científico que lideró otros eventos de gran trascendencia [2, 3].

El experimento se llevó a cabo esa noche de abril de 1851 [4] en el claustro del edificio central de la Universidad de Santiago de Compostela iluminando la Minerva de la Universidad y la torre de la Iglesia de la Compañía. El montaje consistía en pilas Bunsen en serie como fuentes de energía conectadas a un regulador Deleuil con dos electrodos de grafito encargados de generar el arco voltaico.

El experimento diseñado por Casares contaba con 50 pilas tipo Bunsen como fuentes de energía para conseguir la electricidad necesaria para la activación y el mantenimiento del arco voltaico. Estos dispositivos fueron inventados en 1940 por Robert Wilhem Bunsen a partir de una célula previa ideada por el científico galés William Robert Grove, el que posteriormente sería uno de los iniciadores de las pilas de combustible. La idea original de Grove consistía en un sistema compuesto por un ánodo de zinc en ácido sulfúrico diluido y un cátodo de platino sumergido en ácido nítrico concentrado y ambos separados por una olla de cerámica porosa. Robert Bunsen modificó el cátodo de platino por una pieza de grafito, material más barato, dando lugar a una reacción con un potencial algo menor. Las reacciones químicas llevadas a cabo por este dispositivo son:

 

dando lugar a un potencial teórico de 1.72 V, inferior al de las celdas de Grove de 1.9 V.

Otro de los elementos importantes del experimento de Casares fue el regulador Deleuil. Este equipo es el encargado de ir posicionando los electrodos de grafito encargados de la formación del arco voltaico tras el desgaste que sufren. En este caso consta de un electrodo fijo y otro montado sobre un sistema móvil regulado por un electroimán en serie con el propio arco. Este sistema también constaba de un espejo parabólico metálico que permitía concentrar la luz y proyectarla sobre un edificio, como se hizo aquella noche.

Por último, el elemento más importante para la generación de luz es el arco voltaico, que se obtiene tras la ionización del aire entre ambos electrodos de grafito. A pesar de su uso, el arco eléctrico no es apropiado como sistema de iluminación general porque, independientemente de cuestiones tecnológicas (como el sistema de producción eléctrica) y del coste económico, su brillo era excesivo, resultando insoportable incluso a una gran distancia. También ha de tenerse en cuenta que no fue hasta más de 25 años después cuando se inventó la lámpara incandescente que sería utilizada para la implantación generalizada de la iluminación eléctrica en ciudades a finales del siglo XIX.

 

Ilustración de un diseño similar al utilizado por Antonio Casares en su experimento [5].

Mediante el uso de estos equipamientos se procedió a iluminar la noche compostelana provocando gran expectación entre todos los presentes. Fue tanta la importancia del evento que un año más tarde, la noche del 24 de julio de 1852, previa a la celebración del día de Santiago, se repitió el experimento en una de las fachadas de la catedral, congregando a la mayor parte de la población de la ciudad. Sería entonces cuando un bibliotecario de la Universidad de Santiago dijera las palabras “a noite está varrida da terra” (la noche está barrida de la tierra), que pasaron a la posteridad gracias al relato de A. Cotarelo Valledor [6].

Referencias

[1] A. Díaz Pazos, Boletín das Ciencias (ENCIGA)75 (2012) 139.

[2] R. Cid, Anales de Química109 (2013) 27.

[3] R. Cid, Revista Española de Física28 (2014) 59.

[4] J. C. Alayo, J. Sánchez Millán, Técnica e ingeniería en España, VI. El Ochocientos. De los lenguajes al patrimonio, IFC – Real Academia de Ingeniería, Zaragoza, 2011.

[5] A. P. Deschanel, Elementary Treatise on Natural Philosophy, Part 3: Electricity and Magnetism, D. Appleton and Co., New York, 1878.

[6] A. Cotarelo Valledor, La chispa mágica, El Eco de Santiago, Santiago de Compostela, 1923.

Etiquetas:
Categorias: Actualidad (Noticias), Eficiencia, Energía (general)

Aplicación de la computación fluidodinámica en tecnologías de concentración solar térmica como ejemplo de ingeniería verde


Autora: María Isabel Roldán Serrano. CIEMAT-Plataforma Solar de Almería

Actualmente, uno de los grandes retos es acelerar el desarrollo de tecnologías energéticas avanzadas para obtener una energía respetuosa con el medioambiente, frenar el cambio climático y lograr un desarrollo sostenible. En este contexto, la “ingeniería verde” considera que la protección de la salud y del medioambiente genera un gran impacto y rentabilidad cuando se aplica en el diseño y en la fase de desarrollo de un proceso o producto. Otros conceptos relacionados con ingeniería verde son ingeniería ambiental o sostenible. Por ello, en este ámbito, el término “verde” se refiere a procesos y a generación de productos que minimizan la contaminación, promueven la sostenibilidad y protegen la salud sin que implique sacrificar la viabilidad económica y eficiencia del proceso. Más ampliamente, este término ha sido asociado al desarrollo sostenible, en el que procesos y productos pueden realizarse indefinidamente con un consumo de recursos controlado y una degradación medioambiental mínima [1][2].

De esta forma, los procesos y productos procedentes de la ingeniería verde están basados en los siguientes principios [3]:

  • Uso integral del análisis de sistemas e implementación de herramientas de evaluación de impacto ambiental.
  • Conservación y mejora de los ecosistemas naturales, junto con la protección de la salud y el bienestar.
  • Empleo del análisis del ciclo de vida que permite medir el flujo de energía, de materiales y emisiones tóxicas involucradas durante el proceso o la fabricación de un producto.
  • Asegurar que los materiales y energías entrantes y salientes del proceso son respetuosos con la salud y el medioambiente.
  • Evitar el agotamiento de los recursos naturales.
  • Eliminar la generación de residuos y la emisión de los gases de efecto invernadero.Además, es necesario tener en cuenta que la ingeniería verde desarrolla y aplica soluciones tecnológicas adaptadas a la zona donde la instalación es ubicada. Estas soluciones deben implicar la mejora y obtención de una tecnología innovadora que logre alcanzar la sostenibilidad. En este sentido, la aplicación de este tipo de ingeniería se puede agrupar principalmente en cinco categorías [4]: generación de energía renovable, calidad energética, control ambiental, optimización de máquinas y procesos, y  desarrollo y prueba de productos verdes y tecnologías.

    La categoría de generación de energía renovable cubre un amplio rango de tecnologías, tales como eólica, solar (fotovoltaica y térmica), de biocombustibles, hidráulica, mareomotriz y geotérmica. La investigación y desarrollo en estas áreas se está expandiendo e impulsando por los objetivos ambientales anteriormente definidos y por la creciente legislación gubernamental relativa al desarrollo sostenible. Hoy en día más de 50 países, con una gran variedad de políticas, geografías y condiciones económicas, poseen un amplio conjunto de objetivos con el fin de cubrir gran parte de su demanda energética con sistemas de generación a partir de fuentes renovables [2][3].

    Las tecnologías de concentración solar térmica se pueden considerar como un ejemplo de ingeniería verde debido a que utilizan una fuente de energía renovable como alternativa a los combustibles fósiles, contribuyendo positivamente al desarrollo sostenible y permitiendo realizar procesos que eviten la generación de gases de efecto invernadero. En este ámbito, la implementación del llamado “diseño verde” debe ofrecer un sistema viable y rentable a la vez que reduzca la generación de contaminación en la fuente y minimice el riesgo para la salud y medioambiente.

    El sector termosolar es todavía emergente y, en muchos casos, la tecnología y las instalaciones empleadas son experimentales. En este contexto, las tecnologías de concentración solar térmica requieren la integración de un diseño completo y eficiente con el fin de obtener el máximo rendimiento de cada instalación; para lo que es necesario el uso de herramientas de simulación avanzadas que sean capaces de predecir el comportamiento del fluido caloportador en la instalación, así como la definición y optimización de las condiciones de operación con el fin de aumentar la eficiencia del sistema y cumplir con el propósito perseguido por la ingeniería verde.

    La predicción y el análisis del comportamiento térmico y fluido-dinámico de las instalaciones termosolares son la base para mejorar el rendimiento térmico de la planta. Para tal fin se emplea la computación fluidodinámica (CFD) que permite reducir el esfuerzo invertido en la realización del diseño experimental y la adquisición de datos. Esta rama de la mecánica de fluidos complementa el modelado físico y otras técnicas experimentales; puesto que permite suministrar una información detallada de la circulación del fluido en la instalación, incluyendo el estudio de fenómenos complejos como la turbulencia, reacciones químicas, transferencia de calor y materia, y flujo multifásico.

    En la mayoría de los casos, el desarrollo de modelos numéricos implica un menor coste económico y de tiempo, en comparación con el requerido por procedimientos experimentales. Esto permite investigar más opciones de diseño y sistemas bajo condiciones extremas. Además, el modelado CFD ofrece la posibilidad de analizar problemas internos y específicos en el flujo de fluidos que serían muy costosos o imposibles de realizar mediante métodos experimentales; lo que da confianza en la selección del diseño propuesto evitando así el sobredimensionado de la instalación, reduciendo su malfuncionamiento y alargando su periodo de vida. Por ello, la CFD se ha convertido en una herramienta fiable para apoyar a los ingenieros e investigadores en el diseño de equipos industriales e instalaciones innovadoras, eliminando en muchos casos la necesidad de desarrollar el procedimiento experimental de ensayo–error que lleva consigo un consumo de recursos y una generación de residuos que hacen alejarse del objetivo marcado por la ingeniería verde.

    El creciente interés por el “diseño verde” ha llevado a aplicar el modelado CFD en diferentes áreas tales como en el diseño de edificios eficientes energéticamente y en diseño de aerogeneradores. En el sector termosolar, el modelado CFD se está aplicando en el diseño de nuevos conceptos de receptores, en la optimización de diseños existentes, en el análisis térmico de los fluidos de trabajo y, además, en la optimización de las condiciones de operación para distintas instalaciones [5]. Por tanto, la versatilidad de la simulación CFD y la necesidad de desarrollar procesos sostenibles y respetuosos con el medioambiente, hacen que sea una herramienta esencial para plantear nuevos diseños en las tecnologías de concentración solar térmica.

    Fuentes:

  1. Al-Baghdadi MARS (2014) Computational fluid dynamics applications in green design. International Energy and Environment Foundation, Iraq.
  2. Roldán M.I. (2017) Concentrating Solar Thermal Technologies: Analysis and Optimisation by CFD Modelling. Springer International Publishing AG, Switzerland.
  3. US Environmental Protection Agency (2015) https://www.epa.gov/green-engineering.
  4. National Instruments (2008) Ingeniería Verde – Mejorando el Ambiente y la Rentabilidad, Instrumentation 2, vol. 20.
  5. www.psa.es

Etiquetas:
Categorias: Eficiencia, Energía (general), Energía solar

La Concentración de Energía Solar: un mercado todavía pequeño pero que aprende rápido


Autora: Beatriz Lucio-Instituto IMDEA Energía

La reducción de costes que se ha dado en los sistemas para obtener electricidad fotovoltaica (PV, en inglés Photovoltaics) en los últimos diez años, ha provocado que se convierta en una de las opciones energéticas más económicas. Concretamente, en 2016 su capacidad global llegó a los 300 GW, con un crecimiento progresivo anual que supera el 30%. Por otro lado, la concentración de energía solar (CSP, en inglés Concentrating Solar Power) es una alternativa menos conocida, cuya implementación en el mercado empezó después que la PV en el año 2007. En 2016 la capacidad de la CSP alcanzó los 5 GW, pero se encuentran menos datos sobre la evolución de costes comparándola con la PV. Esto es debido a que los sistemas fotovoltaicos tienen dos componentes principales, módulo PV y convertidor, que se ofrecen actualmente en el mercado como producto de forma competitiva; mientras que los sistemas de concentración solar son más complejos. La tecnología más común de la CSP basada en colectores cilindro-parabólico consiste en un campo de colectores, un circuito para la transferencia del calor mediante un fluido que puede incluir el almacenamiento de energía y un bloque de potencia que convierte la energía térmica en electricidad. Existen a nivel mundial sólo unos pocos suministradores con la capacidad de asumir el riesgo financiero, donde el saber hacer representa la parte más valiosa de los proyectos. Para la mayoría de las instalaciones hay información disponible sobre las inversiones de forma global o de los ingresos por kWh, lo que hace que sea muy difícil llegar a una conclusión en términos económicos sobre cómo evoluciona el mercado de la CSP [1].

Un estudio reciente [2] ha identificado las distintas fases de desarrollo del mercado con todos los proyectos comerciales relacionados con la CSP (tanto sistemas cilindro-parabólico como de tipo torre), realizando una base de datos. En este estudio se demuestra que desde los últimos cinco años hay una clara evidencia de la reducción de costes para la CSP de cilindro-parabólico, aumentando los conocimientos al 25%. Estas cifras son superiores a las esperadas y similares a lo que han evolucionado a lo largo de 35 años los módulos de PV.

Referencias:

[1] R. Pitz-Paal. Nat. Energy 2, 17095 (2017).

[2] J. Lilliestam, M. Labordena, A. Patt, S. PfenningerNat. Energy 2, 17094 (2017).

 

Etiquetas:
Categorias: Actualidad (Noticias), Energía (general), Energía solar

El desafío solar: fotovoltaica frente a termosolar


Sin duda la energía solar jugará un papel cada vez más importante en la producción energética mundial, pero determinar en qué proporción contribuirán cada una de las tecnologías disponibles dependerá no solo de aspectos económicos y de las políticas de apoyo, sino también de la capacidad de explotar sus complementariedades.

Autor: Juan M. Coronado-Instituto IMDEA Energía

La energía solar es el recurso renovable más abundante en la tierra y se espera que en el futuro contribuya de forma muy notable al mix energético global. Debido a la reducción masiva de costes experimentada en los últimos años la producción de electricidad mediante sistemas fotovoltaicos (PV) ya representa una de las opciones económicamente más competitivas si se dan las condiciones favorables de la irradiación. Esto ha desencadenado un enorme crecimiento del mercado para sistemas fotovoltaicos en la década pasada, y a finales de 2016 se alcanzó una capacidad global instalada de cerca de 300 GW y con un crecimiento anual de superior al 30%. Por el contrario, la energía solar de concentración (CSP) es una alternativa menos conocida, que, dejando aparte los sistemas de demostración instalados en California entre 1985 y 1991, no inició su despliegue comercial hasta 2007. Las instalaciones CSP alcanzaron una capacidad global de cerca de 5 GW a finales de 2016. Sin embargo, al contrario que en el caso de la PV, existe muy poca información disponible sobre la evolución de los costes. Estas diferencias tienen que ver con el hecho de que los sistemas fotovoltaicos consisten en sólo dos componentes principales, el módulo fotovoltaico y el inversor, ambos disponibles en un mercado muy competitivo y transparente. Por el contrario, CSP es un sistema más complejo: la tecnología más común (basada en receptores cilindroparabólicos) consiste en un campo de concentración de colectores solares, un circuito con el fluido de transferencia de calor, que también puede incluir almacenamiento de energía térmica, y un bloque de potencia que convierte la energía solar de alta temperatura en electricidad.

Con objeto de comprender mejor la evolución de costes del CSP, Johan Lilliestam y sus colaboradores del ETH Zürich (Suiza) han creado una base de datos de todos los proyectos CSP comerciales del mundo utilizando un amplio conjunto de fuentes y desarrollando aproximaciones razonables para estimar parámetros desconocidos y generar un conjunto completo de datos. Este estudio, recientemente publicado en Nature Energy,[1][2] se presenta claras evidencias de una reducción de costes de sistemas CSP de receptores parabólicos en los últimos cinco años a un ritmo superior al 25%. Este valor es mayor de lo esperado y se encentra en el mismo rango que la cifra promedio para módulos fotovoltaicos  en un periodo más largo (20,9% en los últimos entre 35 años). Los investigadores concluyeron que la continuidad en el desarrollo de proyectos y la colaboración de las industrias de fabricación de componentes, así como las políticas de apoyo por parte de gobiernos y administraciones, especialmente si fomentan la competitividad, son importantes para mantener una tasa de aprendizaje alta que permita seguir en la senda de la reducción de costes de CSP.

No obstante, a pesar de estas evidentes mejoras en la reducción de costes del CSP, teniendo en cuenta los valores ya muy competitivos de la generación fotovoltaica, cabe preguntarse si continuar apostando por la tecnología CSP es necesario y/o razonable. En este sentido la respuesta no puede basarse únicamente en la medición de precios de la energía por kWh si no que precisa un examen integral del sistema energético. Actualmente la tecnología PV sólo proporciona electricidad durante las horas de luz solar, lo que obliga a operar estos sistemas en combinación con otras tecnologías que aporten la flexibilidad necesaria para equilibrar la producción y la demanda. En este sentido el CSP con almacenamiento térmico integrado es una opción muy atractiva en comparación con sistemas de almacenamiento de electricidad grandes proporciones. Esto es debido a que la incorporación de las baterías para el almacenamiento de electricidad en las instalaciones de PV siempre lleva asociadas inversiones adicionales muy significativas. Por el contrario, los sistemas CSP con almacenamiento térmico integrado son potencialmente más baratos que los que los sistemas de la misma tecnología que no lo incorporan. De esta manera algunas proyecciones indican que a partir del 2025, en las regiones que cuente con recursos solares abundantes, se espera una alta penetración de sistemas complementarios de PV y CSP. En concreto, en los escenarios donde se limitan las emisiones de CO2 o los precios del combustible son altos, combinara las dos tecnologías solares resulta económicamente más atractivo que la integración de elementos de almacenamiento de electricidad, o sistemas de apoyo basados en combustibles fósiles. Estas conclusiones se basan en el supuesto de que se pueden conseguir importantes reducciones de precios en la producción CSP [3], un hecho que ahora puede ser considerado más probable en un futuro próximo a la luz de los hallazgos del grupo de Lilliestam2.


[1] Robert Pitz-Paal. Nat. Energy. News & Views. 2, 17095 (2017)

[2] Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

[3] Mehos, M., Jorgenson, J., Denholm, P. & Turchi, C. Energy Procedia 69, 2060–2071 (2015).

Etiquetas:
Categorias: Energía (general), Energía solar

Sostenibilidad y diversión


El colegio CEIPSO Maestro Rodrigo de Aranjuez es el primer centro educativo de España que cuenta con un centro de juegos infantil sostenible. El parque infantil genera energía sostenible a partir del movimiento de los columpios y balancines y además está fabricado con neumáticos.

Autora: Rebeca Sánchez-Universidad Rey Juan Carlos

Renault, con la colaboración de su Fundación Renault para la Movilidad Sostenible (FRMS), ha creado un parque infantil como respuesta a los 200.000 neumáticos fuera de uso que se generan en España cada año. Otra de las características importantes de este parque infantil, además de revalorizar un residuo, es que genera energía sostenible. En los columpios y balancines se han instalado dispositivos que transforman la energía cinética en electricidad, con la que se alimenta el sistema de riego y el hilo musical del centro educativo. Además, el parque infantil cuenta con paneles fotovoltaicos (12V) integrados en la arquitectura del parque para completar la generación de energía.

La puesta en marcha de este original parque se llevó a cabo el pasado mes de junio, coincidiendo con los campamentos de verano, y ha contado con la colaboración de Basurama (expertos en proyectos de reutilización creativa de residuos), y Creática (empresa encargada de dispositivos de recuperación de energía).     

El centro educativo Maestro Rodrigo ha acogido con tanto entusiasmo el nuevo parque infantil, que ha puesto en marcha una línea educativa en la que utilizan el juego y la diversión como herramienta de concienciación energética entre los más jóvenes. “En las escuelas sostenibles no nos conformamos solamente con transmitir conocimientos e ideas, sino que además las ponemos en práctica”, comenta el director del centro, Javier Pariente, tras recordar que son precisamente los niños “la fuerza de cambio más poderosa de esta sociedad”.

Fuente: Energynews

Etiquetas:
Categorias: Actualidad (Noticias), Eficiencia, Energía (general)

7° Edición del congreso “WORLD HYDROGEN TECHNOLOGY CONVENTION” – WHTC2017


Autora: Gisela Orcajo Rincón-Grupo de Ingeniería Química y Ambiental. Universidad Rey Juan Carlos

 

En este mes de julio se reunirá en Praga a comunidad científica de hidrógeno y pilas de combustible, en la séptima edición del congreso “World Hydrogen Technology Convention” – WHTC 2017, organizado por la plataforma tecnológica del hidrógeno checa y bajo el patrocinio de la Asociación Internacional del hidrógeno (“International Association for Hydrogen Energy” -IAHE-). El objetivo de este congreso es el de ofrecer una oportunidad única para compartir los últimos hallazgos y resultados en esta materia entre toda la audiencia académica, científica y empresarial.

El tema del congreso “El Futuro puede estar más cerca de lo que crees” (“The Future Might Be Closer Than You Think”), habla de la tendencia clara hacia la integración de las energías renovables y la tecnología del hidrógeno como punto clave para la implantación de sistemas 100% renovables. Este congreso es una oportunidad para aprender también acerca de las aplicaciones innovadoras del hidrógeno y las pilas de combustible, exploración de nuevos productos y encuentro de posibles proveedores, clientes y colaboradores. Allí se debatirán temas muy interesantes referidos a esta tecnología como: fundamentos y teoría de las pilas de combustible, transporte, aplicaciones estacionarias y portátiles, producción, almacenamiento de hidrógeno, simulación y modelado, motores de combustión interna de hidrógeno, regulación y seguridad, políticas y financiación de las tecnologías del hidrógeno. Al igual que en otras ediciones de este congreso, habrá sesiones plenarias muy interesantes, donde se analizarán los éxitos, las oportunidades y los desafíos de la economía del hidrógeno.

 

Etiquetas:
Categorias: Actualidad (Noticias), Eficiencia, Energía (general), Hidrógeno

Celebracion de la 25th European Biomass Conference and Exhibition


La conferencia tuvo lugar del 12 al 15 de junio en Estocolmo (Suecia) y en ella se presentaron resultados del proyecto “Diseño y optimización de una biorrefineria sostenible basada en biomasa del olivar y de la industria del aceite de oliva: analisis tecno-económico y ambiental” (BIOROLSOS), financiado por el Ministerio de Economía y Competitividad, dentro del Plan Nacional I+D+I “Retos de Investigación” 2015-2017, y llevado a cabo en la Unidad de Biocarburantes del CIEMAT.

Autor: Paloma Manzanares -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT

A lo largo de más de 20 años, la European Biomass Conference and Exhibition (EU BC&E) ha combinado un simposio científico de alto nivel con una exposición industrial en el ámbito de la biomasa. Durante la Conferencia celebrada este año, se han discutido temas de interés para los mercados de la biomasa en áreas técnicas y de negocio, que abarcan desde la evolución de recursos hasta el desarrollo de políticas. El evento, en el que han participado más de 1.300 personas, ha tenido como objetivo potenciar un intercambio internacional de experiencias en políticas, investigación y desarrollo, fabricación e instalación, así como llegar a ser un escaparate de las últimas tecnologías. Además, la conferencia ha ampliado su alcance al tema de la bioeconomía, un sector con una estrecha conexión con la bioenergía, donde Suecia se ha convertido en un país líder.

La Unidad de Biocarburantes del Ciemat participó en dicha Conferencia presentado 3 posters y una comunicación oral. En el trabajo titulado “Assessing biomass resources from olive oil production in Spain” se mostraron los resultados obtenidos en el análisis a nivel nacional  de la producción de residuos asociados a la industria del aceite de oliva (hojas y orujillo), evaluando los volúmenes y localizaciones de su producción. Igualmente se ha determinado la generación anual a nivel nacional de los residuos asociados al cultivo del olivar. En otro trabajo titulado  “Valorization of extracted olive oil pomace residue through conversion into bioethanol and bioproducts” se expusieron los resultados obtenidos en la utilización del orujillo (residuo obtenido en la extracción del aceite de oliva) como materia prima para la obtención de etanol y bioproductos.

En la comunicación oral “Techno-Economic Evaluation of a Small Scale Integrated Biorefienery Based on Olive Tree Pruning” se presentó el diseño y la viabilidad tecno-economica de una biorrefinería mediante la aplicación del programa de modelización AspenPlus, utilizando los datos obtenidos a escala de laboratorio por la Unidad de Biocarburantes. En esta biorrefineria se obtendría no solo bioetanol, sino también azúcares, antioxidantes y electricidad.

Por otro lado y ya utilizando paja de cebada como materia prima se presentó el trabajo “Bioethanol and Xylooligosaccharides Production from Agricultural Residue” en el que se presentaron los resultados obtenidos en la obtención de xilooligosacaridos en el pretratamiento por explosión a vapor de paja de cebada. Estos compuestos podrían ser utilizados como prebióticos en la industria farmacéutica lo que revalorizaría el proceso de producción de etanol a partir de dicha materia prima.

Etiquetas:
Categorias: Actualidad (Noticias), Biocombustibles, Biomasa, Eficiencia, Energía (general)