Archivo de enero, 2017

Membranas poliméricas para baterías de Li-ion

Autor: Ricardo Escudero Cid, Pilar Ocón-UAM

Uno de los mayores problemas con el que se enfrentan los gobiernos en la actualidad es el aumento de la contaminación en las grandes ciudades. Este preocupante aumento de la polución se debe en gran medida a la dependencia que existe de combustibles fósiles en el sector energético y en mayor medida en el transporte. Es por eso que, en los últimos meses en ciudades grandes como Madrid se están alcanzando límites preocupantes de contaminación que suponen un riesgo para la salud de sus habitantes. Es por eso que se están tratando de estudiar y desarrollar nuevas tecnologías capaces de abastecer las necesidades de la población, pero causando menores daños medioambientales y mejorando el bienestar de la sociedad.

En la actualidad la mayor dependencia de combustibles fósiles contaminantes se encuentra en el transporte que, a su vez, se encuentra principalmente en las ciudades y es el causante de la alta contaminación de las mismas. Por todo ello, hoy en día se están estudiando multitud de alternativas para el transporte sostenible. Además del incremento de medios de transporte públicos más ecológicos y basados en tecnologías no contaminantes se están realizando grandes avances para la mejora de medios de transporte privados basados en motores híbridos o eléctricos.

Los coches eléctricos son, a día de hoy una realidad y una gran promesa para los próximos años con grandes inversiones de las empresas de automoción. Para poder llevar a cabo un mayor desarrollo de estas tecnologías una de las claves se encuentra en las baterías de este tipo de vehículos, las encargadas de asegurar una alta autonomía necesaria para su implantación a gran escala. Unas de las baterías más extendidas y a la vez más prometedoras para su uso en este tipo de automóviles son las de Li-ion, ya que presentan una alta densidad energética.

Figura 1. Comparación de diferentes tecnologías de baterías dependiendo de su densidad de energía volumétrica y másica [1].

Dentro de este tipo de baterías se encuentran dos grandes grupos, las de electrolito líquido, más tradicionales, y las que usan materiales poliméricos como electrolito sólido. Las de electrolito líquido son las más extensamente utilizadas para este tipo de aplicaciones por su alta conductividad iónica. A pesar de eso, muestran ciertos problemas de seguridad asociados a los ánodos de litio metálico, sus solventes orgánicos volátiles e inflamables y las posibles pérdidas de electrolito. Las baterías de electrolito solido presentan importantes ventajas mejorando su seguridad, flexibilidad y procesabilidad.

Debido a estas ventajas en los últimos años se están haciendo grandes avances en el estudio de este tipo de baterías de membrana polimérica. Las principales características que se buscan en los materiales poliméricos son: alta conductividad iónica cercana a 10-4 S·cm-1 a temperatura ambiente, apreciable transferencia de Li+ con valores próximos a la unidad, buenas propiedades mecánicas, estabilidad en amplia ventana electroquímica próxima a los 4–5 V vs. Li/Li+ y excelente estabilidad química y térmica [2].

Son diferentes las membranas que se están estudiando en la actualidad para su uso en este tipo de dispositivos. Entre los tipos más investigados se encuentran los electrolitos poliméricos sólidos secos (dry-SPE), los sistemas de polímero en sal y los electrolitos poliméricos conductores de Li único.

El primero de ellos, dry-SPE, consiste en una matriz polimérica y una sal de Li. Normalmente poseen una baja conductividad iónica, lo que supone un gran problema para su utilización en aplicaciones reales. La manera de aumentar esa conductividad se realiza modificando la matriz polimérica llegando a incrementarla en 1 o 2 órdenes de magnitud. El segundo tipo de membranas bajo estudio, las de polímero en sal, se lleva a cabo al intentar incrementar la conductividad aumentando la cantidad de sal en la membrana y llegando a valores de composición en peso superiores al 50%. Esto permite llegar a valores elevados en conductividad y en transferencia de iones comprometiendo en parte las propiedades mecánicas del material.  En ambos casos hay una migración de los aniones que produce una importante bajada en conductividad. Para ello se está tratando de estudiar materiales poliméricos capaces de evitar este problema. Por un lado, se trata de anclar los aniones al polímero y por otro se añade un receptor de los aniones que interactúe con ellos mejorando el rendimiento final del dispositivo.

Los diferentes tipos de membranas que se están estudiando en la actualidad muestran interesantes propiedades que permiten ser optimista con la implantación de éstas en la tecnología actual con el fin de mejorar las prestaciones de las baterías de Li-ion así como mejorar sus medidas de seguridad. Todo esto supone un gran reto y a la vez supondrá un gran avance en las tecnologías futuras.

 

Referencias:

[1] Tarascon J-M., Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414, 359-367.

[2] Long L., Wang S., Xiao M., Meng Y. J. Mater. Chem. A, 2016, 4, 10038–10069.

Etiquetas:

Influencia de la porosidad en la transferencia de calor en mallas metálicas aplicadas a receptores volumétricos

Autor: Antonio Luis Ávila-Marín (CIEMAT-PSA)

La tecnología de receptores volumétricos se encuentra en un momento en el que está recibiendo gran interés como se observa por la multitud de proyectos y trabajos científicos recientes [1-6], debido al potencial para aumentar la temperatura de trabajo del fluido caloportador, para reducir las pérdidas térmicas frontales con nuevos diseños y su aplicación en ciclo de potencia más eficientes.

La tendencia actual muestra que con los nuevos diseños se trata de conseguir mayores temperaturas en el fluido de trabajo que conllevan mayores eficiencias en los ciclos de potencia. Por todo ello, los materiales cerámicos son los que están recibiendo un mayor interés, a pesar de que la mayor parte de los diseños no cumple con las condiciones nominales previstas inicialmente [7]. Por otro lado, los materiales metálicos no reciben tanto interés como los cerámicos por no poder trabajar a temperaturas mayores a 800 °C, a pesar de sus importantes ventajas: como la facilidad para trabajar con nuevos diseños geométricos, estructuras más ligeras, menores pérdidas térmicas frontales debido a las menores temperaturas de trabajo (< 800 °C), etc. es por todo ello, que desde el grupo de sistemas de concentración solar de la Plataforma Solar de Almería se está trabajando en una línea prometedora de absorbedores volumétricos con mallas metálicas. A pesar de no llegar a las temperaturas objetivo de 1000 °C, se prevén otras ventajas potenciales asociadas a trabajar a menor temperatura, además de la facilidad para ensayar distintos diseños geométricos de una manera más ágil.

En este sentido, se está efectuando un trabajo experimental y de simulación, estudiando la importancia que tienen distintos parámetros geométricos como el diámetro de hilo, tamaño de malla, porosidad volumétrica y, superficie específica. Un fenómeno de transferencia de calor de gran relevancia es la convección en mallas metálicas con similar porosidad pero distintas propiedades geométricas, dado que anteriores trabajos mostrados en la literatura, muestran una discriminación en la transferencia de calor por influencia de la porosidad, pero sin considerar la influencia de los parámetros geométricos. Es el caso del trabajo publicado por Wu [8], que muestra una correlación para distintas porosidades, pero de la que se concluye que porosidades iguales obtenidas con distintos parámetros geométricos tienen tasas de transferencia de calor iguales.

En nuestro trabajo, se muestra que esta aproximación está lejos de ser cierta, si bien, es un avance en el conocimiento de la tasa de transferencia de calor en espumas.

En la Fig. 1 se muestra una malla tipo A con una porosidad del 70.1 %, un diámetro del hilo de 1.00 mm y un diámetro hidráulico de 2.35 mm y una malla tipo B con una porosidad del 67.6 %, un diámetro de hilo de 0.70 mm y un diámetro hidráulico de 1.46 mm. Como se aprecia, el valor de la porosidad es similar con una diferencia del 3.6 %, mientras que el diámetro del hilo y el diámetro hidráulico difieren en un 30 y 38 % respectivamente.

A la hora de realizar la comparación entre los dos tipos de mallas existen dos posibilidades:

  • Por un lado, realizar la comparación para las mismas condiciones de operación, aun teniendo distinto número de Reynolds, el cual va asociado al diámetro hidráulico. Si se pone atención en el número de Reynolds menor en ambas mallas (equivalente a una velocidad de 0.5 m/s), que es aquel que muestra un comportamiento más estable, se observa que el valor de los coeficientes serían: hlv,Malla A,Re=18 = 0.15·106 (W/(m3·K)) y hlv,Malla B,Re=12 = 0.33·106 (W/(m3·K)), lo que implica que con una malla tipo B, se transfiere alrededor de un 55 % más de energía respecto a la malla tipo A.
  • Por otro lado, se puede realizar la comparación para números de Reynolds similares. Se trataría de comparar el caso de una malla tipo A con un número de Reynolds de 75 y una malla tipo B con un número de Reynolds de 72. En ese caso, el valor de los coeficientes (realizando la media entre los dos extremos de una oscilación) serían: hlv,Malla A,Re=75 = 0.26·106 (W/(m3·K)) y hlv,Malla B,Re=72 = 0.66·106 (W/(m3·K)), lo que implica que con una malla tipo B, se transfiere alrededor de un 61 % más de energía respecto a la malla tipo A, para un empaquetamiento escalonado.

En ambas opciones, los resultados son similares y muestran la importancia de las características geométricas de una malla sobre el coeficiente de transferencia de calor. Estos resultados van íntimamente ligados a la superficie específica que presenta cada configuración geométrica. Mientras que la malla tipo A tiene una superficie específica de 1194 , la malla tipo B presenta un valor de 1849 . El incremento de superficie específica conlleva, en este caso, la mejora en la transferencia de calor volumétrica, aun teniendo porosidades similares.

 

 Bibliografía

[1] F. Gomez-Garcia, J. González-Aguilar, G. Olalde, M. Romero, Thermal and hydrodynamic behavior of ceramic volumetric absorbers for central receiver solar power plants: A review, Renewable and Sustainable Energy Reviews, 57 (2016) 648-658.

[2] S. Mey-Cloutier, C. Caliot, A. Kribus, Y. Gray, G. Flamant, Experimental study of ceramic foams used as high temperature volumetric solar absorber, Solar Energy, 136 (2016) 226-235.

[3] R. Capuano, T. Fend, P. Schwarzbözl, O. Smirnova, H. Stadler, B. Hoffschmidt, R. Pitz-Paal, Numerical models of advanced ceramic absorbers for volumetric solar receivers, Renewable and Sustainable Energy Reviews, 58 (2016) 656-665.

[4] X. Chen, X.-L. Xia, H. Liu, Y. Li, B. Liu, Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer, Energy Conversion and Management, 114 (2016) 20-27.

[5] A.L. Avila-Marin, J. Fernandez-Reche, M. Casanova, C. Caliot, G. Flamant, Numerical Simulation of Convective Heat Transfer for Inline and Stagger Stacked Plain-Weave Wire Mesh Screens and Comparison with a Local Thermal Non-Equilibrium Model, Proceedings of 22nd International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Abu Dhabi, UAE, (2016).

[6] CAPTURE, Competitive solar power towers, http://capture-solar-energy.eu/, (2015).

[7] A.L. Avila-Marin, Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review, Solar Energy, 85 (2011) 891–910.

[8] Z. Wu, C. Caliot, G. Flamant, Z. Wang, Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances, International Journal of Heat and Mass Transfer, 54 (2011) 1527-1537.

 

Etiquetas:

¿Quo vadis, fracking?

Autor: J.L.G. Fierro, Instituto de catálisis y Petroleoquímica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid

La tecnología de fractura hidráulica “fracking”, cuyo concepto es conocido desde hace tiempo, permite extraer la última porción de petróleo aún remanente en los yacimientos que se abandonaron por no resultar rentables. El resultado de la puesta en práctica de esta tecnología es que se  ponen en circulación mayores cantidades de gas y petróleo, lo que ha presionado los precios del mercado norteamericano a la baja. Con la nueva administración que empieza ahora cabe esperar que esta tecnología se potencie en Estados Unidos en la próxima década y previsiblemente este país puede hacerse autosuficiente. Si estas estimaciones se hacen realidad, se puede  producir una verdadera revolución en el mercado del crudo de petróleo ya que Estados Unidos, mayor consumidor de petróleo convencional, puede condicionar el precio del crudo.               

La fractura hidráulica, conocida como fracking en la terminología inglesa, es una forma de recuperar el gas y petróleo que están retenidos en las formaciones de  esquisto o de pizarra de la corteza terrestre. La forma usual de recuperar estos hidrocarburos es mediante la inyección de agua a la que se incorpora arena junto a una serie de sustancias, algunas de naturaleza tóxica. Esta técnica requiere la perforación horizontal y, frecuentemente utiliza pequeñas explosiones durante la perforación lo que facilita la penetración del agua.

Esta tecnología de explotación de gas e hidrocarburos se viene utilizando en Estados Unidos desde los años 70 si bien la explotación masiva se alcanzó a partir de 2009 hasta alcanzar en 2010 unos 200.000 pozos en explotación. Según las estimaciones del Departamento de Energía, la producción diaria actual de petróleo y gas en Estados Unidos alcanzó en 2010 unos 15 millones de barriles de gas y 10 millones de  barriles petróleo, una producción total superior a las de Arabia Saudí y Rusia. Lo que ha sucedido con el desplome de los precios del crudo convencional en 2016 es que una parte importante de las explotaciones mediante fractura hidráulica no resultó competitiva frente al crudo convencional. De hecho dos de los países que han venido explotando la fractura hidráulica a gran escala, como son estados Unidos y Canadá, han clausurado una parte de sus instalaciones de explotación de gas e hidrocarburos mediante esta tecnología. Sin embargo, por mucho que los costes de producción obliguen a las empresas a desaparecer, no significa que lo vaya a hacer este tipo de petróleo no convencional. Una vez que liquiden, su misma competencia puede hacerse con sus activos, esto es hacerse con los derechos a perforar. Esta estrategia que viene defendiendo la Organización de Países Exportadores de Petróleo (OPEP) ha hecho que las compañías sean más eficaces. Además, hay que añadir el desconocimiento del resultado que tendrá esta estrategia de la OPEP. Lo que si parece claro es que el alto precio del petróleo es algo del pasado y que lo más normal es que vaya a la baja.

Ante la presión por explotar las fuentes de hidrocarburos propias, los países utilizan la potencialidad de la fractura hidráulica como una tecnología efectiva de explotación de estos recursos. Las reservas mundiales probadas hasta 2015 ascienden a unos 3.000 miles de billones  de barriles. En la tabla adjunta se recopilan las reservas probadas de algunos países:

 

 

Tabla 1. Reservas probadas de hidrocarburos no convencionales susceptibles de ser explotados mediante la tecnología de fractura hidráulica.

Esta tabla indica el potencial que tienen estos países de explotación futura de estos recursos mediante la tecnología de fractura hidráulica. China, con una extensión similar a la de Estados Unidos pero con una población cuatro veces superior, es el país con mayores reservas probadas de hidrocarburos no convencionales. La Unión Europea depende en gran medida de las importaciones por lo que trata de diversificarlas, aunque esto no siempre es posible.

Las estimaciones recientes del Departamento de Energía de Estados Unidos cifran una producción diaria de unos 10 millones de barriles de petróleo y de 15 millones de barriles de gas hasta 2020. Con la nueva administración que empieza ahora cabe esperar que la tecnología de la fractura hidráulica se potencie en Estados Unidos en la próxima década de forma que pueda alcanzar una producción diaria de 18 millones de barriles de petróleo, una cifra muy significativa en cuanto que se acerca al consumo diario y así puede hacerse autosuficiente. Si estas estimaciones se hacen realidad se puede  producir una verdadera revolución en el mercado del crudo de petróleo ya que Estados Unidos, mayor consumidor de petróleo convencional, puede condicionar el precio del crudo y que su tendencia sea más hacia la estabilización que hacia el alza. 

Referencias

  1. A. Kleinschmidt, Why we will still need oil and gas in the future, Siemens, February 29, 2016
  2. El futuro del fracking en la lógica energética, A. Arias, Energy News, 18 Enero, 2016

    Energy Policy 2016: Spotlight on Donald Trump, The Fuse, May 12, 2016

Etiquetas:

Multimillonario plan contra la contaminación en China

[Autora: Elena Díaz-Instituto IMDEA Energía]

La madrugada del 6 de enero se dio a conocer el nuevo plan quinquenal del sector energético de China aprobado por el Consejo de estado, en el que se prevé una inversión de 2.500 millones de yuanes (345.000 millones de euros) y la creación de más de 13 millones de empleos hasta 2020 en la generación de energía renovable. El objetivo de este plan, asociado al pasado acuerdo COP 22 de Paris, es la reducción de emisiones gaseosas contaminantes siempre unida al ahorro energético.

China es uno de los países más contaminantes del mundo, principalmente debido al gran uso que hacen del carbón, representando el 64% del consumo energético del país (2015), además de por encontrarse en un periodo de desarrollo industrial. Es el país con mayor contribución de emisiones de CO2 (Figura 1) y sus ciudades sufren de grandes problemas de contaminación. Se llegan a superar hasta en 12 veces los valores máximos recomendados por la Organización Mundial de la Salud en cuanto a material particulado debido al efecto conjunto de fábricas, siderurgias, centrales térmicas, coches, obras y calderas de calefacción. Cerca de cien ciudades (62% de las 338 monitorizadas por el Ministerio de Protección Ambiental) han estado en diferentes niveles de alerta desde el pasado diciembre, sufriendo algunas de ellas periodos de nivel rojo en el que se aplican medidas como el cierre de fábricas y escuelas, el paro de obras, la restricción del tráfico a días alternos e incluso el cierre total de autopistas o la cancelación de vuelos por problemas de visibilidad. La contaminación ambiental se ha convertido en uno de los principales problemas de China, cobrándose millón y medio de vidas al año

Figura 1: Emisiones CO2 en 2013 (www.worldbank.org)

 

Figura 2. Beijing el 01/01/17 (izquierda) y el 23/12/16  (derecha). (http://cnnespanol.cnn.com/)

Este proyecto acelera un proceso de inversión ya iniciado años atrás, puesto que en el anterior plan quinquenal ya se habían comprometido a producir el 20% de la energía con fuentes renovables para 2030. Las emisiones de CO2 disminuyeron un 2% en 2014, la primera caída desde 2001, y más de 2.000 pequeñas minas de carbón fueron cerradas de 2012 a 2016. Se preveían grandes inversiones en energías limpias así como el cierre de las plantas térmicas más contaminantes con el objetivo de reducir el consumo en 13 millones de toneladas en 2017. Durante el 2015 China fue el país que más invirtió en energías renovables, destinando el doble de financiación que EEUU y cinco veces más que el Reino Unido. A finales de 2015, poco después de la conferencia de Paris, el gobierno chino dio a conocer el compromiso de reducir al 60% las emisiones del sector energético y de disminuir en 180 millones de toneladas el total de CO2 emitido a la atmósfera anualmente, que fue definido por la ONG WWF como un proceso viable técnica y económicamente. Al mismo tiempo, China se ha convertido en el primer inversor mundial en energías renovables en el extranjero, desembolsando en 2016 un 60% más que en el año anterior en países como Brasil, Australia, Chile, Pakistán, Indonesia, Alemania, Egipto y Vietnam.

Las nuevas metas fijadas para 2020 son la generación del 15% del consumo energético actual del país (equivalente a 580 millones de toneladas de carbón) a partir de fuentes renovables y un tope de consumo energético total equivalente a 5.000 millones de toneladas de carbón. Esto último supone que el incremento anual deberá reducirse desde el 3,6% registrado en el periodo 2011-2015 hasta un 2,5%. Para debilitar el uso del carbón y ampliar el de las renovables pretenden aumentar el apoyo a las políticas de financiación de este tipo de energías con la finalidad de que la capacidad instalada de energía renovable contribuya con aproximadamente la mitad de la nueva capacidad de generación para 2020. Se prevé que casi un tercio de la capacidad total instalada a nivel mundial de energía eólica, hidroeléctrica y solar será en China. Además, la proporción de combustibles no fósiles aumentará por encima del 15% y el uso del gas natural deberá llegar al 10% de forma que el conjunto represente más del 68% del incremento total previsto del consumo energético. Al mismo tiempo se pretende promover la disminución de costes de las energías renovables y el aumento de la eficiencia en el uso de la energía, así como la innovación y cooperación a nivel global en el sector energético.

De los 2.500 millones de yuanes previstos, 1.000 irán a parar a proyectos de energía solar, 700 a eólica, 500 a hidroeléctrica y mareomotriz y 300 a geotermia. Cabe destacar que, además de las anteriores, el documento incluye la energía nuclear dentro de las energías renovables. China cuenta con 35 reactores de energía nuclear en operación, 21 están en construcción y se prevé incrementar la capacidad hasta llegar a 58 GW en 2020, 150 GW en 2030 y aún más en 2050. La energía eólica contaba con el 8.6% de capacidad en 2015, aunque solo generaba el 3,3% de la electricidad total, por lo que deberá ser aumentada en estos cinco próximos años. Respecto a la hidráulica, dos grandes proyectos han sido añadidos recientemente: Tres Gargantas de 18,2 GW y Río Amarillo de 15,8 GW. La energía solar es uno de los puntos fuertes del país: en 2015 batió el record mundial de mayor capacidad solar instalada en un año y el 2016 se ha convertido en el país con mayor capacidad total instalada. Aun así, sigue habiendo oportunidades de inversión debido a que los costes de este tipo de energía siguen bajando. Como ejemplo de solar fotovoltaica, en la región de Ningxia se está construyendo una de las mayores instalaciones, que cubrirá 4.607 hectáreas con casi 6 millones de paneles solares para producir 2 GW. Por otro lado, la primera planta de energía solar térmica de concentración (CSP) a escala comercial en China está siendo diseñada por la empresa española Ingeteam, la cual contará con almacenamiento por sales fundidas de hasta 7,5 horas y generará 50 MW. En 2018 se habrá completado una primera fase de proyectos CSP que incluye 9 plantas de torre solar, 7 de cilindros parabólicos y 4 de Fresnel lineal, sumando una capacidad total de 1,4 GW.

Una semana más tarde, la Administración Estatal Oceánica publicó el plan quinquenal sobre el desarrollo de la energía renovable oceánica, incluyendo energía mareomotriz, la generada por las olas, la de contraste térmico y la biomasa. En él proponen promover el uso de este tipo de energía por medio del apoyo a la investigación y a la innovación tecnológica, centrándose especialmente en las regiones insulares del Mar Meridional.

Además de las medidas relacionadas con la generación eléctrica también se han aplicado iniciativas a otros sectores, como la tarifación regulada de la electricidad a las acerías según su evolución tecnológica con el objetivo de favorecer a las más eficientes, la regulación de las emisiones de los coches de segunda mano para beneficiar aquellos vehículos más eficientes, el aumento del papel de las energías renovables en la calefacción de viviendas o una mayor rigurosidad en el control de las emisiones. Otro ejemplo es el plan de responsabilidad ampliada de los productores, por el que su compromiso se extiende no solo al diseño y el consumo de sus productos, sino también al reciclaje y el tratamiento de residuos. La finalidad última es desarrollar una economía “circular” en la que la cantidad de residuos vertidos disminuya en base a alargar la cadena de valor de los productos y reutilizar los desechos.

China es el país que emite más CO2 del mundo y a la vez el que realiza mayores inversiones en energías renovables. Se enfrenta a una difícil transformación en la que el PIB crece al 6,7% (primeros tres trimestres de 2016) a la vez que se esfuerza por construir un sector energético cada vez menos agresivo.


Más información:

Etiquetas: