Influencia de la porosidad en la transferencia de calor en mallas metálicas aplicadas a receptores volumétricos

Autor: Antonio Luis Ávila-Marín (CIEMAT-PSA)

La tecnología de receptores volumétricos se encuentra en un momento en el que está recibiendo gran interés como se observa por la multitud de proyectos y trabajos científicos recientes [1-6], debido al potencial para aumentar la temperatura de trabajo del fluido caloportador, para reducir las pérdidas térmicas frontales con nuevos diseños y su aplicación en ciclo de potencia más eficientes.

La tendencia actual muestra que con los nuevos diseños se trata de conseguir mayores temperaturas en el fluido de trabajo que conllevan mayores eficiencias en los ciclos de potencia. Por todo ello, los materiales cerámicos son los que están recibiendo un mayor interés, a pesar de que la mayor parte de los diseños no cumple con las condiciones nominales previstas inicialmente [7]. Por otro lado, los materiales metálicos no reciben tanto interés como los cerámicos por no poder trabajar a temperaturas mayores a 800 °C, a pesar de sus importantes ventajas: como la facilidad para trabajar con nuevos diseños geométricos, estructuras más ligeras, menores pérdidas térmicas frontales debido a las menores temperaturas de trabajo (< 800 °C), etc. es por todo ello, que desde el grupo de sistemas de concentración solar de la Plataforma Solar de Almería se está trabajando en una línea prometedora de absorbedores volumétricos con mallas metálicas. A pesar de no llegar a las temperaturas objetivo de 1000 °C, se prevén otras ventajas potenciales asociadas a trabajar a menor temperatura, además de la facilidad para ensayar distintos diseños geométricos de una manera más ágil.

En este sentido, se está efectuando un trabajo experimental y de simulación, estudiando la importancia que tienen distintos parámetros geométricos como el diámetro de hilo, tamaño de malla, porosidad volumétrica y, superficie específica. Un fenómeno de transferencia de calor de gran relevancia es la convección en mallas metálicas con similar porosidad pero distintas propiedades geométricas, dado que anteriores trabajos mostrados en la literatura, muestran una discriminación en la transferencia de calor por influencia de la porosidad, pero sin considerar la influencia de los parámetros geométricos. Es el caso del trabajo publicado por Wu [8], que muestra una correlación para distintas porosidades, pero de la que se concluye que porosidades iguales obtenidas con distintos parámetros geométricos tienen tasas de transferencia de calor iguales.

En nuestro trabajo, se muestra que esta aproximación está lejos de ser cierta, si bien, es un avance en el conocimiento de la tasa de transferencia de calor en espumas.

En la Fig. 1 se muestra una malla tipo A con una porosidad del 70.1 %, un diámetro del hilo de 1.00 mm y un diámetro hidráulico de 2.35 mm y una malla tipo B con una porosidad del 67.6 %, un diámetro de hilo de 0.70 mm y un diámetro hidráulico de 1.46 mm. Como se aprecia, el valor de la porosidad es similar con una diferencia del 3.6 %, mientras que el diámetro del hilo y el diámetro hidráulico difieren en un 30 y 38 % respectivamente.

A la hora de realizar la comparación entre los dos tipos de mallas existen dos posibilidades:

  • Por un lado, realizar la comparación para las mismas condiciones de operación, aun teniendo distinto número de Reynolds, el cual va asociado al diámetro hidráulico. Si se pone atención en el número de Reynolds menor en ambas mallas (equivalente a una velocidad de 0.5 m/s), que es aquel que muestra un comportamiento más estable, se observa que el valor de los coeficientes serían: hlv,Malla A,Re=18 = 0.15·106 (W/(m3·K)) y hlv,Malla B,Re=12 = 0.33·106 (W/(m3·K)), lo que implica que con una malla tipo B, se transfiere alrededor de un 55 % más de energía respecto a la malla tipo A.
  • Por otro lado, se puede realizar la comparación para números de Reynolds similares. Se trataría de comparar el caso de una malla tipo A con un número de Reynolds de 75 y una malla tipo B con un número de Reynolds de 72. En ese caso, el valor de los coeficientes (realizando la media entre los dos extremos de una oscilación) serían: hlv,Malla A,Re=75 = 0.26·106 (W/(m3·K)) y hlv,Malla B,Re=72 = 0.66·106 (W/(m3·K)), lo que implica que con una malla tipo B, se transfiere alrededor de un 61 % más de energía respecto a la malla tipo A, para un empaquetamiento escalonado.

En ambas opciones, los resultados son similares y muestran la importancia de las características geométricas de una malla sobre el coeficiente de transferencia de calor. Estos resultados van íntimamente ligados a la superficie específica que presenta cada configuración geométrica. Mientras que la malla tipo A tiene una superficie específica de 1194 , la malla tipo B presenta un valor de 1849 . El incremento de superficie específica conlleva, en este caso, la mejora en la transferencia de calor volumétrica, aun teniendo porosidades similares.

 

 Bibliografía

[1] F. Gomez-Garcia, J. González-Aguilar, G. Olalde, M. Romero, Thermal and hydrodynamic behavior of ceramic volumetric absorbers for central receiver solar power plants: A review, Renewable and Sustainable Energy Reviews, 57 (2016) 648-658.

[2] S. Mey-Cloutier, C. Caliot, A. Kribus, Y. Gray, G. Flamant, Experimental study of ceramic foams used as high temperature volumetric solar absorber, Solar Energy, 136 (2016) 226-235.

[3] R. Capuano, T. Fend, P. Schwarzbözl, O. Smirnova, H. Stadler, B. Hoffschmidt, R. Pitz-Paal, Numerical models of advanced ceramic absorbers for volumetric solar receivers, Renewable and Sustainable Energy Reviews, 58 (2016) 656-665.

[4] X. Chen, X.-L. Xia, H. Liu, Y. Li, B. Liu, Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer, Energy Conversion and Management, 114 (2016) 20-27.

[5] A.L. Avila-Marin, J. Fernandez-Reche, M. Casanova, C. Caliot, G. Flamant, Numerical Simulation of Convective Heat Transfer for Inline and Stagger Stacked Plain-Weave Wire Mesh Screens and Comparison with a Local Thermal Non-Equilibrium Model, Proceedings of 22nd International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Abu Dhabi, UAE, (2016).

[6] CAPTURE, Competitive solar power towers, http://capture-solar-energy.eu/, (2015).

[7] A.L. Avila-Marin, Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review, Solar Energy, 85 (2011) 891–910.

[8] Z. Wu, C. Caliot, G. Flamant, Z. Wang, Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances, International Journal of Heat and Mass Transfer, 54 (2011) 1527-1537.

 

Compartir:

Deja un comentario