Archivo de febrero, 2017

Celdas de combustible microbianas con membrana intercambiadora de iónes

Autores: Daniel Herranz González, Pilar Ocón – UAM

Las celdas de combustible microbianas son una tecnología en desarrollo y generalmente se usan, más que para la producción directa de energía, para para el tratamiento energéticamente eficiente de distintos tipos de aguas residuales, las cuales contienen los substratos que hacen la función de combustibles. Algunos ejemplos de estos combustibles/substratos son el acetato o la sacarosa. También pueden ser usadas con otras funcionalidades interesantes como la descalcificación del agua, descontaminación de amoniaco o la electrosíntesis.

Las celdas de combustible microbianas suelen tener ánodos basados en carbono en los cuales ha sido inoculado alguna de las siguientes opciones: un conjunto microbiótico que contiene especies electroactivas (llamadas “exoelectrogens” en inglés) para el tratamiento de aguas residuales de distintos tipos en estudios más aplicados a situaciones reales ó una sola especie electroactiva (en cuyo caso se trata de un monocultivo) en estudios más fundamentales.1 Algunos ejemplos de estas especies electroactivas son la Escherichia coli, la Shewanella oneidensis, o la Geobacter Sulfurreducens. Estas especies se encargan de oxidar los substratos y descargar los electrones en el ánodo, deben estar en una cámara anaeróbica ya que si no descargarían los electrones en el oxígeno (que es el funcionamiento natural de estas bacterias en medios aeróbicos). Una vez los electrones han sido descargados en el ánodo viajan por el circuito externo hasta llegar al cátodo, donde se da la reacción de reducción de la especie aceptora de los electrones (generalmente es el oxígeno). El cátodo puede ser alimentado con una disolución que contenga esta especie o por “air breathing” (con aire del exterior que contiene el oxígeno, ya sea de forma pasiva o bombeado). Como se ha visto, en general no debe haber presencia de oxígeno en el ánodo y por lo tanto ambas zonas deben tener un separador eficiente entre ellas que no permita su paso. Los catalizadores usados en el cátodo pueden ser tanto abióticos (basados en Pt u óxidos de manganeso por ejemplo) como bióticos (pudiendo ser microbiales o enzimáticos). También pueden usarse cátodos fotoelectroquímicos.

Este tipo de celdas pueden diseñarse de muchas formas, y en bastantes casos incluyen la presencia de membranas de intercambio iónico. Si los iones que se mueven a través de la membrana están cargados positivamente se trata de CEM (Cation Exchange Membranes) y si están cargados negativamente son AEM (Anion Exchange Membranes). Varios estudios realizados hasta el momento indican que se obtiene mejor funcionamiento (en potencia y eficiencia culómbica) y estabilidad temporal usando AEM que CEM. Las razones más relevantes aportadas son las siguientes: las AEMs (o las celdas que las usan) tienen menor permeabilidad de oxígeno, menor problema de diferenciación de pH entre la cámara del ánodo y la del cátodo, menor resistencia catódica, menor formación de precipitados sobre el catalizador del cátodo y mayor conductividad iónica. Esto último es un contraste curioso con las celdas de combustible comunes (no bióticas), en las que las membranas transportadoras de cationes suelen tener mejor conductividad que las de aniones, aunque hay que resaltar que los iones implicados son distintos a los de las celdas de combustible microbianas. En cualquier caso este tipo de celdas de combustible aún se hayan en una etapa muy inicial de su desarrollo y más investigación será necesaria antes de poder afirmar qué tipo de membranas serán las que aporten un mejor funcionamiento.2

 

Bibliography

1         B. E. Logan, Nat. Rev. Microbiol., 2009, 7, 375–381.

2         J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. a. Hickner, P. a. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu and L. Zhuang, Energy Environ. Sci., 2014, 7, 3135–3191.

 

Etiquetas:

El talento, la curiosidad y la inquietud científica no son patrimonio de ningún género

Autora: Esther Rojas-CIEMAT

De acuerdo con el informe She Figures 2015 elaborado por la Dirección General de Investigación e Innovación de la Comisión Europea[1], en 2012 el 42% de los alumnos que acabaron un posgrado universitario en ciencias, matemáticas y computación eran mujeres (en España el 47%). Sin embargo, en 2013, el número de investigadoras en Europa era tan solo el 30% del total de investigadores. Este desequilibrio no es sino un reflejo del sesgo, inconsciente o no, a favor de los varones que aún existe en el mundo de la ciencia en general[2]. Con el fin de lograr el acceso y la participación plena y equitativa en la ciencia para las mujeres y las niñas, y además para lograr la igualdad de género y el empoderamiento de las mujeres y las niñas, la Asamblea General de las Naciones Unidas decide proclamar, a finales de 2015, el 11 de febrero como el Día Internacional de las Mujeres y las Niñas en la Ciencia.

Con motivo de esta celebración numerosas organizaciones, colectivos y personas individuales organizaron actividades (charlas, talleres, actuaciones, exposiciones, concursos) para visibilizar a las científicas, proporcionar roles femeninos en el ámbito de la ciencia y fomentar las vocaciones científicas entre las más jóvenes. La Unidad de Excelencia María de Maeztu CIEMAT-Física de Partículas (CIEMAT-FP) junto con el Laboratorio Nacional de Metrología de Radiaciones Ionizantes (LMRI) se sumó a esta iniciativa organizando tres actividades divulgativas entre los días 8 y 10 de febrero de 2017.

El 8 de febrero tuvo lugar un encuentro en el que nueve investigadoras del CIEMAT, con diferentes formaciones académicas (Física, Ingeniería, Biología, Economía, Geología y Química), trabajando en diferentes áreas del centro (Energía, Investigación Básica, Fusión, Tecnología y Medioambiente), se pusieron a disposición de  alumnas de 3º de la Educación Secundaria Obligatoria a 2º de Bachillerato para charlar con ellas y contestar a sus preguntas, bien sobre su propio trabajo o sobre las perspectivas de futuro de las alumnas. Tras la bienvenida al CIEMAT por parte de su Director General, y para facilitar el planteamiento de estas preguntas, se hizo una breve presentación de las actividades y trayectoria profesional de cada científica/ingeniera. Fue el Science Dating.

El 9 de febrero el LMRI organizó una jornada  orientada a alumnas de 2º de Bachillerato. La radiación, ya sea de origen natural o con fines médicos diagnósticos o terapéuticos, es un motivo de preocupación social ya que es una posible causa, entre otras muchas, de la aparición del cáncer. Sin embargo, se puede usar la radiación en nuestro propio beneficio: en radioterapia, para destruir el tejido tumoral maligno; en el diagnóstico médico, para la observación de una fractura ósea con rayos X; para la esterilización de materiales, etc. En la jornada, científicas del LMRI explicaron estas  aplicaciones, así como su proyección en el mercado laboral. Se realizaron varios experimentos para mostrar los efectos de la radiación y su detección y se visitaron dos laboratorios del LMRI.

En la Girls’ Masterclass, realizada el 10 de febrero,  cuarenta estudiantes de 2º de Bachillerato realizaron una práctica de análisis de datos reales tomados del solenoide compacto de muones (CMS en sus siglas inglesas -Compact Muon Solenoid-) que es uno de los dos detectores de partículas de propósito general del Gran Colisionador de Hadrones, (LHC en sus siglas inglesas -Large Hadron Collider-) del CERN (Laboratorio Europeo de Física de Partículas). Para entender esta práctica, científicas del CIEMAT impartieron previamente un seminario sobre física de partículas, realizando una demostración con un detector de rayos cósmicos. La discusión de los resultados de la práctica y de lo aprendido durante esta jornada se hizo en colaboración con científicas del CERN en Ginebra y con otros institutos de investigación participantes en unas jornadas similares en Cagliari (Italia) y Rio de Janeiro (Brasil)mediante video-conferencia.

Con la recepción de inscripciones de doscientas sesenta alumnas (algunas con interés en varias de las actividades ofertadas), procedentes de cincuenta institutos, para las ciento sesenta plazas disponibles, esta iniciativa divulgativa de CIEMAT-FP y del LMRI no puede clasificarse sino de exitosa. Las impresiones recibidas de muchas estudiantes son, en general, muy positivas, constatando que la experiencia ha sido muy motivadora para ellas. El impacto real será difícil de evaluar y habrá que esperar a las estadísticas de los próximos años. Romper las barreras que encuentran las mujeres y las niñas en la ciencia no es tarea fácil. Las científicas e ingenieras del CIEMAT lo saben con certeza… Confiemos que organizando y participando en estas tres actividades se haya contribuido a transmitir que el talento, la curiosidad y la inquietud científica no son patrimonio de ningún género.


 

[1]https://ec.europa.eu/research/swafs/pdf/pub_gender_equality/she_figures_2015-final.pdf

[2] Moss-Racusin et al, 2012, Science faculty’s subtle gender biases favor male students, Proceedings of the National Academy of Sciences of the United States of America PNAS 109 (41) 16474-16479;

Etiquetas:

Combustibles alternativos y la sostenibilidad del transporte

Autores: Diego García y Diego Iribarren-Instituto IMDEA Energía

A finales del año 2014, la Unión Europea publicó la Directiva 2014/94/UE para la implantación de una infraestructura de combustibles alternativos. Tras un arduo proceso, España aprobó el diciembre pasado el Real Decreto 639/2016 que presentaba las medidas, a modo de resumen, del Marco de Acción Nacional de energías alternativas en el transporte. Dicho documento, fechado en octubre de 2016 y validado en el citado real decreto, detalla medidas que promueven el despliegue de las diversas alternativas existentes para mejorar el transporte –tanto por carretera como marítimo, ferroviario y aéreo– y que pasa por el gas natural, la electricidad, el gas licuado del petróleo, el hidrógeno y los biocarburantes.

De acuerdo al RD 639/2016, se fijan plazos máximos (18 de noviembre de 2019) para detallar un informe con medidas específicas, tanto legales como técnicas y presupuestarias, que impliquen el despliegue de dichos vectores energéticos en el transporte. Asimismo, resulta interesante que en el Anexo I se enlisten como necesarios aspectos tales como la estimación del número de vehículos propulsados con cada uno de los combustibles alternativos para 2020, 2025 y 2030, así como el grado de consecución de objetivos concretos. Este proceder, mirando al largo plazo, brinda una oportunidad a los agentes involucrados y los decisores políticos para ir estableciendo objetivos ambiciosos encaminados al logro.

A este respecto, el uso conjunto de Análisis del Ciclo de Vida y Modelización de Sistemas Energéticos cobra especial relevancia dado que permite enfoques prospectivos de sostenibilidad basados en el análisis de escenarios. Si a esto se le añade el esfuerzo conjunto de expertos y agentes involucrados, se estaría en disposición de atajar los problemas derivados del uso de los derivados petrolíferos en un sector tan crucial como el del transporte. En este sentido, son varias las experiencias que anticipan tales avances. Así, el programa de investigación regional ResToEne-2 (S2013/MAE-2882), centrado en las opciones futuras de biocombustibles desarrollados a partir de residuos agroforestales, y el proyecto PICASO, que persigue una adecuada planificación de la implementación de combustibles alternativos en el ámbito nacional (ENE2015-74607-JIN AEI/FEDER/UE), contribuirán significativamente a la meta de sostenibilidad en el sector transporte.

Etiquetas:

Lloyds lo confirma: las renovables son ya plenamente competitivas

Las tecnologías de generación con fuentes renovables ya son competitivas con los combustibles fósiles y la innovación está cobrando ritmo en todo el sector, según pone de relieve un nuevo informe de Lloyd’s Register, publicado hoy. El estudio también destaca el papel protagonista que van a tener la energía solar y el almacenamiento en un futuro inmediato.

Fuente: www.energias-renovables.com

Avanzar hacia la sostenibilidad nunca ha sido más urgente y la tecnología seguirá desempeñando un papel crucial en este recorrido. El Lloyd’s Register Technology Radar – Low Carbon examina las perspectivas que como consecuencia de ello se abren para las energías renovables, la energía nuclear, la red y las infraestructuras eléctricas, junto con el almacenamiento de energía.
Para la realización del estudio, Lloyds sondeó la opinión de líderes del sector, preguntando a casi 600 profesionales y expertos de todo el mundo, desde empresas de servicios públicos y distribuidores hasta operadores y fabricantes de equipos. A todos ellos les pidió que calificaran una serie de tecnologías según su impacto potencial, el tiempo que llevaría que llegaran al mercado y la probabilidad de que fueran adoptadas una vez que lo hicieran.

También se les pidió que reflexionaran sobre el ritmo y el éxito de la innovación en su sector y cuáles son, en su opinión, los principales mecanismos que impulsan del desarrollo de las tecnologías bajas en carbón y lo que más las frena.

Principales resultados

• Las tecnologías de generación con bajas emisiones de carbono son competitivas en términos de coste. El 70% de quienes trabajan en renovables creen que estas tecnologías han alcanzado o están alcanzando la paridad de coste con los combustibles fósiles.

• De todas, la solar fotovoltaica es probablemente la que tendrá el mayor impacto. El sector se muestra optimista sobre su potencial de avance y en la facilidad de aceptación de esta tecnología.

• Los avances en software serán fundamentales en la transmisión y distribución de electricidad. Los encuestados opinan que esta será la innovación más rápida en llegar y  la más fácil de aceptar. Consideran que la cadena de bloques (tecnología que tiene el poder de cambiar para siempre nuestra relación con el mundo digital)  podría remodelar definitivamente la forma en que entendemos la transmisión y la distribución de electricidad.

• Las tecnologías que transformarán el almacenamiento serán las eléctricas, más que las mecánicas o químicas. En particular, los encuestados esperan que los supercondensadores, que aceleran rápidamente el tiempo de carga de las baterías grandes, tengan un fuerte impacto en este campo.

• El mayor obstáculo para la implementación de las energías renovables es su despliegue. No obstante, el 71% de los sondeados coincidió en que se está produciendo un aumento en la escala de despliegue de estas fuentes.

• La normalización es muy necesaria para el sector. Los expertos de la industria renovable están de acuerdo en que un consenso nacional y global sobre las regulaciones podría acelerar el despliegue de estas tecnologías y reducir aún más los costes.

“Estas conclusiones nos han hecho sentirnos muy animados: ponen de relieve no sólo un creciente optimismo en toda la industria, sino un debate vigoroso e inteligente sobre las vías de descarbonización”, ha declarado Alasdair Buchanan, director de Energía de Lloyd’s Register. “Hay muchas incertidumbres acerca de cómo evolucionará la industria, pero lo que es incuestionable es que la discusión ya no se centra en el `¿deberíamos?`, sino en `¿cómo debemos hacerlo?´”

Este es el tercer año consecutivo que Lloyd´s Register realiza su “radar tecnológico”. Pero mientras que en las dos ocasiones anteriores se centró en el petróleo y del gas, en esta ocasión la consultora dirige toda la atención al sector de bajas emisiones de carbonos, en especial a las renovables, el almacenamiento de energía y las infraestructuras eléctricas. Con sus informes, LLoyds busca aportar información al debate gubernamental y a la política energética en todo el mundo.

 

Etiquetas:

Biohidrógeno – Proyectos NREL

El biohidrógeno se define como “hidrógeno producido biológicamente”, habitualmente a partir de algas, bacterias y arqueas. El biohidrógeno es un biocombustible con gran potencial que puede obtenerse mediante cultivo específico o a partir de desechos orgánicos. En el NREL se están llevando a cabo varios proyectos dirigidos a una producción sostenible de este tipo de hidrogeno biológico.

 Autor: Gabriel Morales, Universidad Rey Juan Carlos

National Renewable Energy Laboratory (NREL) (http://www.nrel.gov/)

El Laboratorio Nacional de Energías Renovables (National Renewable Energy Laboratory, NREL), con sede en Golden, Colorado, es el principal centro de investigación de los EE.UU. en temas de energías renovables y de eficiencia energética. Se trata de una institución pública, dependiente del gobierno y financiada por el Departamento de Energía (DOE). Entre sus campos de investigación más activos se encuentran: la bioenergía, la eficiencia energética en edificios, la química y nanociencia, las ciencias computacionales, la energía solar de concentración, la integración de sistemas energéticos, la energía geotérmica, las redes eléctricas avanzadas, las células de hidrógeno y de combustible, la ciencia de materiales, la energía solar fotovoltaica, la electrificación del transporte, la energía hidráulica, y la energía eólica. Está constituido por 3 centros nacionales más otros 3 centros de investigación asociados, tiene abiertos 13 programas de investigación, con una financiación acumulada de más de 350 millones de dólares, su actividad genera más de 1000 publicaciones al año, mantiene más de 800 patentes, con más de 2700 personas entre empleados e investigadores visitantes y post-doctorales.

Campus del NREL en Golden, Colorado.

Proyectos sobre biohidrógeno en el NREL

En el departamento de bioenergía del NREL se han desarrollado dos plataformas renovables para la producción sostenible de hidrógeno. Una de dichas plataformas se basa en una fermentación microbiana de azúcares (es decir, biomasa lignocelulósica) mediante la cual se pueden producir grandes cantidades de hidrógeno, conocida como fermentación oscura. Consiste en la obtención de hidrógeno a partir de compuestos orgánicos ricos en carbohidratos en ausencia de luz por la acción combinada de un grupo de bacterias anaerobias. Es un proceso complejo en el que intervienen diferentes grupos microbianos que crecen en la oscuridad, principalmente del género Enterobacter, Bacillus y Clostridium, los cuáles actúan de manera coordinada y secuencial, para descomponer la materia orgánica en ausencia de oxigeno libre. Los monosacáridos son la principal fuente de carbono, particularmente la glucosa seguida de la xilosa, el almidón, la celulosa y otras fuentes que pueden ser generadas a partir de la hidrólisis de polisacáridos, proteínas y lípidos. En ambientes anóxicos, los protones pueden actuar como un aceptor de electrones en presencia de la enzima hidrogenasa. En estas condiciones las bacterias anaerobias, sin requerimientos de energía lumínica, fermentan sustratos ricos en carbohidratos. En este proceso interactúan diversas clases de microorganismos, los cuales convierten la materia orgánica en otros compuestos, incluido el hidrógeno, y en nuevas células bacterianas.

La otra plataforma de producción sostenible de hidrógeno se basa en las algas verdes y en la capacidad innata de las cianobacterias para catalizar la producción de hidrógeno, ligándola directamente a las rutas fotosintéticas. Las algas (específicamente la Chlamydomonas reinhardtii y la Chlamydomonas moewusii) producen hidrógeno bajo ciertas condiciones. Cuando dichas algas son privadas de azufre dejan de producir oxígeno mediante fotosíntesis, y producen hidrógeno.

La clave en ambos procesos son unas metalo-enzimas, las hidrogenasas, que son enzimas que catalizan de modo reversible la oxidación de hidrógeno; y sus mecanismos catalíticos subyacentes también están siendo objeto de investigación actualmente en el NREL.

 

Proyecto de Producción Fermentativa de Hidrógeno

La biomasa lignocelulósica es una fuente atractiva para la producción de hidrógeno mediante fermentación oscura debido a su abundancia y al elevado contenido en azúcares (aprox. 40% de celulosa, y aprox. 30% de hemicelulosa). El objetivo principal del proyecto del NREL en este ámbito es conseguir una producción de hidrógeno más económica cambiando el tipo de materia prima de biomasa de elevado coste de los procesos tradicionales e incrementando el bajo rendimiento molar de hidrógeno (mol H2/mol hexosa).

Para disminuir los costes de la biomasa, el NREL ha desarrollado la bacteria degradadora de celulosa Clostridium thermocellumpara convertir directamente la celulosa/hemicelulosa en hidrógeno sin depender de un costoso cóctel de enzimas hidrolíticas en una configuración de bioproceso integrado. Para mejorar el rendimiento molar de hidrógeno, se ha desarrollado una caja de herramientas (“toolkit”) genética, una tecnología que facilita la manipulación de las rutas metabólicas de C. thermocellum para dirigir un mayor flujo celular hacia la producción de hidrógeno. Además, se puede producir más hidrógeno a partir de la corriente residual de la fermentación (acetato, lactato, formiato, etanol) usando una célula de electrólisis microbiana (MEC). Esta integración fermentación oscura-MEC, desarrollada en colaboración con la Penn State University, ha permitido alcanzar un rendimiento molar a hidrógeno combinado de 10, el mayor publicado hasta la fecha.

 

Proyecto de Producción Fotobiológica de Hidrógeno

Empleando la energía del sol y los electrones del agua, tanto las algas verdes Chlamydomonas reinhardtii como las cianobacteriasSynechocystis sp. PCC 6803 son microorganismos fotosintéticos modelo para la producción de hidrógeno renovable. Una importante barrera técnica para la producción sostenible de hidrógeno fotolítico es la sensibilidad de las hidrogenasas de las algas y las cianobacterias frente al oxígeno molecular (O2), subproducto inherente de la fotosíntesis oxigénica. En una estrategia para abordar dicha barrera, en el NREL se ha transformado en ambos hospedantes una hidrogenasa tolerante a O2 procedente de Clostridium acetobutylicum (una hidrogenasa-FeFe en las algas verdes) o de Rubrivivax gelatinosus (una hidrogenasa-NiFe en las cianobacterias), diseñadas para producir de forma continua hidrógeno durante el día. En una segunda estrategia, el grupo del NREL ha restringido el nutriente azufre de las algas verdes para atenuar la generación de O2 a fin de alcanzar una producción de hidrógeno simultánea durante la fotosíntesis. La sobre-expresión de las enzimas hidrogenasas y su integración en las rutas fotosintéticas del hospedante son áreas prioritarias en este campo de investigación.

Etiquetas:

Residuos de poda y limpieza de jardines para la obtención de Bioproductos

El pasado miércoles 18 de Enero se ha celebrado en Madrid la Reunión de Lanzamiento del Proyecto BIO-LIGWASTE, “Nuevo concepto de biorrefinería multifuncional basado en la producción de bioetanol lignocelulósico y otros bioproductos a partir de residuos de poda y limpieza de jardines”

Autor: Ignacio Ballesteros  -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT

El pasado día 18 de Enero el CIEMAT acogió la reunión de lanzamiento del Proyecto BIO-LIGWASTEL del Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (http://www.idi.mineco.gob.es/portal/site/MICINN/). El consorcio está formado por las empresas; Técnicas y Tratamientos Medioambientales SAU (TETma), Vivers Centre Verd, SAU (centreVERD) ambas empresas pertenecientes al grupo OBINESA (http://www.obinesa.com/), empresa especializada en el área medioambiental, el Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y el Instituto IMDEA Energía.

El Proyecto de tiene como objetivo la revalorización de los residuos de la limpieza y poda de los jardines urbanos para la producción de bioetanol y otros bioproductos de alto valor añadido.

Este proyecto pretende desarrollar una alternativa, basándose en el concepto de biorrefinería, para la obtención de biocombustibles y bioproductos de alto valor añadido, utilizando como materia prima los residuos vegetales que se generan como resultado del mantenimiento y limpieza en los espacios públicos o privados. Estos residuos constituyen una materia prima renovable disponible en grandes cantidades y a bajo coste, carente de otras aplicaciones económicamente viables y cuya eliminación es necesaria desde el punto de vista medioambiental.

El interés de este proyecto radica en la utilización y valorización de todas las fracciones obtenidas tras el pretratamiento de los residuos vegetales generados. La fracción de azúcares celulósicos será convertida en etanol mediante un proceso de hidrólisis y fermentación separadas. La fracción líquida, rica en xilosa, será convertida en ácido láctico para que pueda ser utilizado en la industria cosmética, farmacéutica o como precursor de bioplásticos. Por último, la fracción sólida residual, compuesta en su mayoría por lignina y cantidades menores de carbohidratos, será convertida en un bioaceite mediante su descomposición termo-catalítica en un reactor de pirolisis-rápida.

Gracias a esta nueva propuesta de valorización se contribuirá a una mejor gestión de los residuos, proporcionando una propuesta sostenible ambientalmente, viable económicamente, generadora de empleo y que ayude al cumplimiento de los objetivos legislativos en materia de residuos urbanos.

Etiquetas: