Archivo de octubre, 2019

Electrodos basados en grafeno, ¿una revolución para la tecnología fotovoltaica?

Autores: Susana Mª Fernández Ruano. José Javier Gandía Alabau. Unidad de Energía Solar Fotovoltaica. Departamento de Energía. CIEMAT.

Uno de los retos a los que se enfrenta la sociedad actual es el desarrollo de nuevas tecnologías que permitan generar y almacenar energía de manera segura, sostenible y limpia; como consecuencia de la fuerte demanda energética existente. La generación de energía está originando una gran discusión socioeconómica que se ve agravada por el enorme crecimiento de la demanda en países emergentes. Esto da lugar a serios problemas medioambientales, de contaminación y cambio climático, así como a importantes problemas económicos por la cada vez más acuciante escasez de los recursos naturales y el continuo incremento de la factura de la electricidad. Estamos pues ante una sociedad altamente dependiente de las fuentes de energía, que comienza a ser consciente de la urgencia que hay por desarrollar y utilizar nuevas energías alternativas con carácter sostenible, por temor de que se agoten los recursos naturales.

En este escenario energético, en los próximos años se espera que la tecnología fotovoltaica juegue un papel crucial en la lucha contra el cambio climático. Hoy en día, la hoja de ruta del mercado fotovoltaico, dominado por la tecnología de la oblea de silicio, muestra una fuerte tendencia hacia células más delgadas y más baratas. En este sentido, la tecnología de heterounión de silicio surge como solución potencial de baja temperatura, ya que se trata de dispositivos con excelentes prestaciones y bajo consumo de energía en su fabricación. Uno de los progresos en esta tecnología requiere desarrollar nuevas arquitecturas de electrodos frontales transparentes que permitan la extracción de la corriente del dispositivo de manera más eficiente. En este sentido, el uso del grafeno, el material más resistente que se conoce en la naturaleza, atrae un gran interés. Se piensa que puede ser el substituto incluso de materiales tan importantes como el propio silicio en algunas aplicaciones, y promete su aplicación en sectores muy dispares. Las expectativas generadas para este material están siendo enormes, y no hay duda que presenta propiedades excepcionales que en principio podrían suponer una verdadera revolución tecnológica debido a sus características específicas.

Bajo estas premisas, la Unidad de Energía Solar Fotovoltaica (UESF) del CIEMAT, en colaboración con la División de Química y la Unidad de Electrónica, ambas también del CIEMAT, y el Instituto de Sistemas Optoelectrónicos y Microtecnologías (ISOM), perteneciente a la Universidad Politécnica de Madrid (UPM), se encuentra inmersa en el proyecto DIGRAFEN de la convocatoria de Retos de 2017 [1]. Una de las finalidades de este proyecto es llegar a implementar el grafeno, aprovechando sus excelentes propiedades, en dispositivos de generación de energía ya existentes. En particular, se pretende incorporar este material de modo que se mejoren las propiedades electrónicas y ópticas de los electrodos frontales, obteniendo así células fotovoltaicas más eficientes. Este proyecto es altamente innovador puesto que su principal enfoque es desarrollar nuevas tecnologías e ingeniería de procesado del grafeno para su uso en dispositivos de generación y almacenamiento de energía.

Actualmente la UESF, en estrecha colaboración con el ISOM, se encuentra explorando nuevas arquitecturas de electrodos transparentes basadas en incorporar una, dos y/o tres capas de grafeno atómico en unión con un óxido conductor transparente convencional, en diferentes configuraciones (ver Fig. 1 (a)).

  

Fig. 1. (a) Configuraciones de electrodo transparente con grafeno, y (b) sus propiedades ópticas, testeadas en el marco del proyecto DIGRAFEN [2].

Los primeros resultados obtenidos revelan que las propiedades optoelectrónicas del electrodo transparente basado en grafeno dependen dramáticamente del orden en el que se encuentren las capas de grafeno atómico. Tanto es así que se han obtenido valores de resistencia de hoja de 55 Ω/sq cuando el grafeno se coloca en la parte superior del electrodo, y de 150 Ω/sq, cuando el grafeno está situado en la parte posterior del mismo (cubierto por el óxido conductor transparente). En cuanto a sus propiedades ópticas, se ha observado que la transmitancia del conjunto no se ve afectada por la posición del grafeno; mientras que la comparación de las reflectancias espectrales con y sin grafeno transferido en la parte superior, nos permiten determinar una importante reducción en este valor, esencial para el dispositivo, validándose así la nueva arquitectura. Estos electrodos se aplicarán en un futuro muy cercano sobre un dispositivo fotovoltaico de heterounión de silicio. Todo ello con la intención de convertir en realidad el uso de uno de los materiales más prometedores que existen, contribuyendo además a la mejora de la generación de una energía limpia y sostenible.

Referencias:

[1] http://projects.ciemat.es/web/digrafen/

[2] S. Fernández, A. Boscá, J. Pedrós, A. Inés, M. Fernández, I. Arnedo, J.P. González, M. de la Cruz, D. Sanz, A. Molinero, R. Singh Fandan, M.A. Pampillón, F. Calle, J.J. Gandía, J. Cárabe, J. Martínez, “Advanced Graphene-based transparent conductive electrodes for photovoltaic applications”, Micromachines 2019, vol 10, 402 (11 pages).

Online version: https://doi.org/10.3390/mi10060402

 

Socios del proyecto:

Contacto:

Susana Mª Fernández Ruano de la Unidad de Energía Solar Fotovoltaica del CIEMAT. E-mail: susanamaria.fernandez@ciemat.es

Etiquetas:

Hacia un ciclo sostenible de carbono

Autor: Juan José Vilatela García. Instituto IMDEA Materiales

El eje conductor de la ciencia de materiales de hoy en día se debe centrar prioritariamente en mitigar directa o indirectamente las emisiones de gases invernadero de la actividad humana. Estudios recientes nos dan una guía para navegar a través de los enormemente complejos retos tecnológicos asociados, poniendo el foco en transformar el transporte y la industria, contribuyentes de cerca del 62% de emisiones de CO2. Estamos urgidos también a acelerar el paso. A pesar de los loables objetivos de sostenibilidad liderados por Europa hacia el 2050, las proyecciones muestran una realidad alarmante; la producción de acero y aluminio, los materiales con mayores emisiones asociadas, se duplicarán en 30 años [1].

Una estrategia prometedora es el reemplazo de metales altamente emisores por nuevos materiales de carbono, más ligeros, evidentemente, pero sobre todo, fabricados mediante procesos de menores emisiones. El punto de partida es usar procesos para transformar catalíticamente una fuente de carbono, por ejemplo gas natural, en materiales estructurales y conductores eléctricos. De cara al objetivo de reducir emisiones mediante el reemplazo de metales, la reacción simplificada asociada nos permite analizar las distintas áreas a desarrollar

La energía suministrada al proceso contiene las mayores contribuciones a las emisiones y es una variable a minimizar. Para tener una métrica de comparación se puede considerar, por ejemplo, la huella de 10kg CO2/kg en la producción de aluminio [2]. En comparación, las emisiones en la fabricación de negro de humo (en inglés carbon black, CB) a partir de gas natural, son cercanas al 0.8 CO2/kg [3]. La perspectiva energética es aún más halagüeña si en el proceso se recupera el H2 y se utiliza como combustible. Visto desde otra perspectiva, los elementos estructurales y conductores del futuro se pueden fabricar como subproductos durante la generación de hidrógeno; una idea en la que ya apuesta el sector público-privado en EEUU [4], por ejemplo.

La utilidad práctica del proceso descrito por esta sencilla ecuación depende principalmente de las características del carbono resultante, es decir, de cuánto pueden competir con metales tradicionales. Y es aquí donde los detalles importan y por lo tanto donde la actividad científica es intensa. La capacidad de fabricar nanocarbonos y ensamblarlos en materiales macroscópicos como cables, fibras, telas, con propiedades superiores a las del acero y el aluminio, nos abre por primera vez en la historia, la puerta a considerar seriamente la posibilidad de usar estos procesos transformativos a gran escala como vehículos de reducción de emisiones. Desde distintos ángulos, diversas iniciativas a nivel mundial persiguen este objetivo basado en nanocarbonos: el desarrollo de nuevos cables eléctricos en Japón, la nueva generación de materiales compuestos estructurales en Corea impulsada por LG Chemical, el centro para la transformación de carbono en Houston, EEUU, impulsado por la industria petroquímica [5], y la producción masiva de nanotubos de carbono presentada por el mismo Putin en la cumbre de París de las Naciones Unidas [6].

Esquema  de la fabricación de fibras estructurales y conductoras a partir de la síntesis de nanotubos de carbono (CNT) mediante descomposición catalítica de una fuente de carbón (izquierda). Ejemplos de imágenes de la fibra durante su fabricación e hilado continuo y su estructura de CNTs (derecha).

Con esta perspectiva investigadores de IMDEA Materiales, IMDEA Energía e IMDEA Nanociencia llevamos casi una década trabajando conjuntamente en la investigación de nanotubos de carbono, centrados en tres áreas principales: entender y controlar mejor la reacción de síntesis, ensamblar nanotubos de maneras que potencien sus propiedades axiales, y su integración en aplicaciones principalmente en aligeramiento y gestión energética en transporte. Recientemente, realizamos estudios sobre la ruta térmica de descomposición de distintos precursores de carbono in-situ durante la fabricación de fibras de CNTs [7]. Esto permitió encontrar nuevas herramientas para aumentar el rendimiento del proceso y las propiedades del material resultante a través de la elección de precursores de carbono. Actualmente, nuestros esfuerzos buscan continuar dando pasos en la mejora de propiedades de materiales a base de nanocarbonos a través del control molecular y del ensamblado, así como en el desarrollo de herramientas analíticas para evaluar el impacto de estas tecnologías desde una perspectiva de sostenibilidad global.

[1] Sustainable Materials Without the Hot Air: Making Buildings, Vehicles and Products Efficiently and with Less New Material. Julian M. Allwood, Jonathan M. Cullen, UIT Cambridge Ltd, 2015.

[2] United Nations: Climate Change and Transnational Corporations – Analysis and Trends. U. N. Centre on Transnational Corporations, Environment Series 2, 1992, ST/CTC/112, ISBN 92‐1‐104385‐9, Chapter 7 “Production of Energy Intensive Metals”.

[3] http://www.remanufacturing.org.uk/pdf/story/1p158.pdf.

[4] R&D Opportunities for Development of Natural Gas Conversion Technologies for Co-Production of Hydrogen and  Value-Added Solid Carbon Products, Lawrence Livermore Laboratory, 2017

[5] https://news.rice.edu/2019/01/28/turning-natural-gas-into-carbon-nanotubes-cuts-energy-use-carbon-dioxide-emissions/.

[6] https://www.climatechangenews.com/2016/01/06/vladimir-putins-global-warming-fix-carbon-nanotubes/.

[7] X. Rodiles et al, Nature Scientific Reports, (2019) 9:9239.

Contacto

Juan José Vilatela, Responsable de Grupo de Nanocompuestos Multifuncionales de IMDEA Materiales, y miembro del Programa FotoArt-CM.

Etiquetas:

ONYX, UN SISTEMA CONTACT-LESS ROMPEDOR, DISEÑADO PARA CARACTERIZAR EL GRAFENO

AutoresSusana Mª Fernández Ruano. Unidad de Energía Solar Fotovoltaica. Departamento de Energía. CIEMAT. Andrea Inés, Sergio Garay, Israel Arnedo. Das Nano Company.

En 2004, gracias a los Doctores K. Novoselov y A. Geim, se consiguió aislar el grafeno a temperatura ambiente utilizando un método tan simple como es la cinta Scotch. Este descubrimiento fue tan rompedor que bien valió el Premio Nobel de Física en 2010. Desde aquel momento, se prometen miles de aplicaciones en sectores muy dispares para este material increíble, y se piensa que podrá a llegar a ser tan relevante que sustituirá materiales tan utilizados como es el silicio. Esto es debido a las excelentes propiedades que presenta: duro, resistente, flexible y muy ligero; conduce el calor y la electricidad y permanece estable cuando se le somete a grandes presiones. Es tan versátil que se piensa que puede llegar a ser una auténtica revolución para la tecnología no tardando mucho tiempo.

Sin embargo, todo el magnífico progreso que se está realizando para obtener películas de grafeno que cubran grandes superficies no está siendo acompañado por métodos de caracterización rápidos y eficientes que permitan la obtención de sus propiedades eléctricas sin dañarlo. Ante esta nueva necesidad, la empresa tecnológica das-Nano ha desarrollado Onyx, el primer sistema contact-less del mercado, que permite caracterizar materiales en reflexión mediante ondas de Terahercio (ver Figura 1). Onyx permite medir parámetros eléctricos (conductividad, movilidad, densidad de portadores, etc) de materiales avanzados sin contacto y de forma no destructiva, a muy alta velocidad para obleas completas, y proporcionando mapas para una fácil visualización. Como muestra de lo novedoso de este equipo, que cubre la brecha entre las mediciones a macro y nano escala, la oficina de patentes de EEUU ha concedido a das-Nano una patente con la tecnología que está integrada en Onyx [1]. Este equipo permite también medir la distribución espacial de la calidad de la muestra con una excelente resolución espacial, del orden de unos pocos cientos de micras, y tiempo reducido, mejorando la eficiencia en comparación con otros métodos del mercado. Además, Onyx establece un compromiso óptimo entre resolución y velocidad de medida, pudiendo utilizarse tanto en procesos industriales como en investigación. Los estudios realizados con este novedoso equipo han generado recientemente varias publicaciones científicas en revistas de alto factor de impacto, confirmando que la inspección basada en ondas de Terahercio utilizada por Onyx es una gran herramienta para la caracterización de materiales avanzados como el grafeno.

Un ejemplo del buen funcionamiento de Onyx son los mapas de conductancia (Fig. 2a) y resistencia (Fig. 2b) obtenidos para un electrodo conductor transparente basado en la combinación de tres monocapas de grafeno, transferidos sobre una lámina de óxido de indio dopado con estaño (ITO), depositada por pulverización catódica, sobre silicio. Estas estructuras están siendo diseñadas y fabricadas en la Unidad de Energía Solar Fotovoltaica (UESF) del CIEMAT dentro del marco del proyecto DIGRAFEN, de la convocatoria de Retos de 2017 [2]. Este proyecto de ámbito nacional pretende demostrar que se puede aplicar el grafeno en dispositivos de generación y almacenamiento de energía para desarrollar nuevos y mejores productos.

 

 

 Fig. 1.  Imagen del equipo Onyx desarrollado por la empresa tecnológica das-Nano.

 

Fig. 2. Mapas de (a) conductancia y (b) resistencia de un electrodo transparente híbrido basado en grafeno e ITO, obtenidos con el equipo Onyx [3].

 

Los mapas mostrados en la Figura 2 son un claro ejemplo de lo potente que puede llegar a ser este equipamiento; pueden obtenerse con excelente resolución a velocidades tan rápidas como 15 mm2/min, lo cual facilita enormemente el proceso de caracterización, y se convierte en una técnica muy competitiva. Además, de estos mapas puede extraerse no sólo los valores de la conductancia y resistencia, 14.03 mS y 76.2 Ω/ en este caso particular, sino que se puede validar la homogeneidad de las muestras, que en el caso del grafeno y su manejo puede resultar muy útil.

A la vista de estos resultados, creemos que Onyx es la tecnología que necesita la industria de producción de grafeno para despegar definitivamente.

Referencias:

 [1] Azanza, E.; Chudzik, M.; López, A.; Etayo, D.; Hueso, L.E.; Zurutuza, A. Das Nano, S.L. Quality 399   inspection of Thin films materials. Unites States patent, US 10,267,836 (B2), 2019 April 23.

[2] http://projects.ciemat.es/web/digrafen

[3] S. Fernández, A. Boscá, J. Pedrós, A. Inés, M. Fernández, I. Arnedo, J.P. González, M. de la Cruz, D. Sanz, A. Molinero, R. Singh Fandan, M.A. Pampillón, F. Calle, J.J. Gandía, J. Cárabe, J. Martínez, “Advanced Graphene-based transparent conductive electrodes for photovoltaic applications”, Micromachines 2019, vol 10, 402 (11 pages). Online version: https://doi.org/10.3390/mi10060402

Contacto:

Susana Mª Fernández Ruano, Unidad de Energía Solar Fotovoltaica del CIEMAT.

E-mail: susanamaria.fernandez@ciemat.es

 

Etiquetas:

INSHIP – Integrating National Research Agendas on Solar Heat for Industrial Processes

Autor: Alfonso Vidal-CIEMAT

Resumen

A pesar de que el calor de proceso es reconocido como la aplicación con mayor potencial entre las aplicaciones de calefacción y refrigeración solar, el calor solar para procesos industriales (SHIP) todavía presenta una modesta participación de alrededor de 88 MWth de capacidad instalada (0,3% del total de la capacidad solar térmica instalada).

En este contexto, el proyecto INSHIP (Integrating National Research Agendas on Solar Heat for Industrial Processes) tiene por objeto la definición de un ECRIA (European Common Research and Innovation Agenda) que reúne a los principales institutos de investigación europeos con actividades reconocidas en el ámbito del SHIP.

El uso de la energía solar concentrada en sustitución de los combustibles fósiles para impulsar la calcinación endotérmica del CO3Ca a más de 1300 K tiene el potencial de reducir las emisiones de CO2 en un 20% en una planta de cal de última generación y hasta un 40% en una planta de cemento convencional.

En este sentido, la actividad 4.2 del proyecto INSHIP liderada por CIEMAT se centra en la integración de este proceso en una planta de torre central, la selección del tipo de reactor más adecuado y finalmente la evaluación del rendimiento térmico del receptor en condiciones reales.

Abstract

Despite process heat is recognized as the application with highest potential among solar heating and cooling applications, Solar Heat for Industrial Processes (SHIP) still presents a modest share of about 0.3% of total installed solar thermal capacity. In this context, the project INSHIP (Integrating National Research Agendas on Solar Heat for Industrial Processes) aims at the definition of an ECRIA (European Common Research and Innovation Agenda) engaging major European research institutes with recognized activities on SHIP

Cement is the third-largest energy consumer in the industry sector, accounting for 7% of total final industrial energy use, but due to important process emissions, cement has the second-largest share of CO2 emissions from industry at 27%, i.e. 6.5% of total energy-related CO2 emissions.

The use of concentrated solar energy in place of fossil fuels for driving the endothermic calcination reaction CaCO3 = CaO + CO2 at above 1300 K has the potential of reducing CO2 emissions by 20% in a state-of-the-art lime plant and up to 40% in a conventional cement plant.

The activity 4.2 of the INSHIP project led by CIEMAT focuses on the integration of a cement process in a central tower plant, selection of the most suitable reactor configuration and finally the evaluation of the thermal performance of the receiver under real conditions.

A pesar de que el calor de proceso es reconocido como la aplicación con mayor potencial entre las aplicaciones de calefacción y refrigeración solar, el calor solar para procesos industriales (SHIP) todavía presenta una modesta participación de alrededor de 88 MWth de capacidad instalada (0,3% del total de la capacidad solar térmica instalada). A nivel regional, la contribución del calor de proceso en el consumo total de energía final representa valores en torno al 30% en Asia y América Latina, alrededor del 20% en Europa, Eurasia y Australia no pertenecientes a la OCDE o alrededor del 15% en Europa, África y América de la OCDE.

La gama actual de costes de producción de calor muestra que el calor de proceso impulsado por energías renovables (ER) ya es económicamente competitivo cuando se consideran la biomasa o los recursos geotérmicos. La energía solar térmica se acerca actualmente a la competitividad sólo en aplicaciones de baja temperatura.

En este contexto, el proyecto INSHIP (Integrating National Research Agendas on Solar Heat for Industrial Processes) tiene por objeto la definición de un ECRIA (European Common Research and Innovation Agenda) que reúne a los principales institutos de investigación europeos con actividades reconocidas en el ámbito del SHIP.

El paquete 4 del proyecto tiene como objetivo identificar aquellos procesos industriales con una demanda importante de calor a alta temperatura y altas emisiones, de cara a una posible integración de energía solar concentrada. 

La industria del cemento es el tercer consumidor de energía del sector industrial, con un 7% del total del consumo final de energía industrial, pero debido a las importantes emisiones de los procesos, el cemento tiene la segunda mayor parte de las emisiones de CO2 de la industria, con un 27%, es decir, un 6,5% del total de las emisiones de CO2 relacionadas con la energía. Se prevé que esta cuota se duplique en 2050 bajo el 2DS, situando al subsector del cemento en el primer lugar.

El uso de la energía solar concentrada en sustitución de los combustibles fósiles para impulsar la calcinación endotérmica [1] a más de 1300 K tiene el potencial de reducir las emisiones de CO2 en un 20% en una planta de cal de última generación y hasta un 40% en una planta de cemento convencional.

En este sentido, la actividad 4.2 del proyecto INSHIP liderada por CIEMAT se centra en la integración de este proceso en una planta de torre central, la selección del tipo de reactor más adecuado y finalmente la evaluación del rendimiento térmico del receptor en condiciones reales.

Para este tipo de proceso se ha seleccionado la geometría de cavidad,  esta geometría ha sido ampliamente utilizada como concepto de reactor solar dado que ha demostrado tener mayores eficiencias que los receptores externos (1,2). El uso de geometrías de cavidad facilita la reducción de las pérdidas térmicas, minimizando las pérdidas convectivas y radiativas totales, lo que conduce a una mejora de la eficiencia óptica.

Estas configuraciones son adecuadas para aplicaciones de concentración solar ya que suelen mostrar una baja respuesta a los cambios en las condiciones de funcionamiento, lo que evita cambios bruscos de temperatura en presencia de pequeños transitorios, lo que resulta especialmente útil cuando se aplica calor solar a una planta química en la que los cambios de temperatura en un proceso pueden producir problemas en el control de la planta.

Un prototipo de receptor de 100 kW se está ensayando en la torre CRS de la Plataforma Solar de Almería en condiciones reales para confirmar este tipo de comportamiento.

[1] Harris, J.A., Lenz, T.G.,. Thermal performance of solar concentrator/ cavity receiver systems. Solar Energy 34 (2), (1985). 135–142.

[2] Clausing, A.M. An analysis of convective losses from cavity solar central receivers. Solar Energy 27 (4), (1981) .295–300.

Contacto

Alfonso Vidal, Investigador del Grupo CIEMAT-ATYCOS del Programa ACES2030-CM.- alfonso.vidal@ciemat.es

Coordina ACES2030-CM Manuel Romero del Instituto IMDEA Energía.

Etiquetas: