Perovskitas redox para el almacenamiento de calor solar a alta temperatura

Autores: Emanuela Mastrornardo y Juan M. Coronado (Instituto de Catálisis y Petroleoquímica, CSIC)

La energía solar, al ser un recurso accesible y básicamente ilimitado, es una fuente de energía renovable muy atractiva, que se puede convertir en electricidad mediante distintas tecnologías, entre las que se incluyen las plantas de energía solar de concentración (CSP por su acrónimo en inglés). Sin embargo, la naturaleza diurna de la luz solar y su variabilidad con el tiempo atmosférico imponen un límite importante al rendimiento de esta tecnología. Por tanto, para su desarrollo futuro, las plantas de CSP necesitan ser acopladas con un sistema de almacenamiento de energía económico y eficiente, cuyo desarrollo podría facilitar una mayor expansión de la producción de este tipo de energías renovable. Con este propósito, los sistemas de almacenamiento termoquímico (TCS) resultan particularmente atractivos para operar plantas CSP a altas temperaturas, ya que pueden almacenar directamente el calor solar y reutilizarlo en los periodos nocturnos o de baja irradiación, permitiendo la generación de electricidad en continuo. Para avanzar en el desarrollo de esta tecnología proyecto SESPer (Marie Sklodowska-Curie grant, 746167), desarrollado en colaboración entre la Universidad Northwestern de Estados Unidos y el Instituto de Catálisis y Petroleoquímica (ICP) del CSIC, tiene como objetivo el desarrollo de mejores materiales para el almacenamiento térmico. Para ello se propone desarrollar la metodología para una determinación precisa de sus propiedades termodinámicas, y realizar ensayos de intercambio de calor, inicialmente en condiciones de laboratorio y posteriormente en condiciones más realistas, que permitan acercar el desarrollo de esta tecnología a un nivel más próximo a la escala comercial de las futuras plantas CSP.

Los óxidos de tipo perovskita (con fórmula general ABO3) resultan especialmente interesantes como posibles candidatos para los sistemas TCS. Estos materiales presentan la capacidad de liberar o absorber oxígeno de forma continua dentro de un rango de temperatura muy amplio, a través de un proceso de creación/destrucción de vacantes de oxígeno en la red cristalina. El principio de operación de un sistema TCS basado en perovskitas se fundamenta en la siguiente reacción:

ABO3 (s) ↔ ABO3-δ (s) + δ/2 O2 (g)          

La liberación de una cantidad de oxígeno (reducción), al ser endotérmica, constituye la etapa de almacenamiento de calor, mientras que el proceso inverso de oxidación genera calor cuando es necesario. La cantidad de oxígeno que es intercambiable de manera reversible, δ, es una función de la temperatura y la presión parcial de oxígeno, que son parámetros que se pueden controlar durante el funcionamiento de la planta. Una de las características más interesantes de estos óxidos mixtos es que los metales A y B pueden ser fácilmente reemplazados por elementos similares, sin sufrir ningún cambio de fase. Esto significa que, modificando la composición química, el material puede presentar una amplia gama de comportamientos, y en concreto permite modular el grado de reducción que es posible alcanzar. Sin embargo, muchos de los tipos de perovskita estudiados hasta ahora contienen elementos de tierras raras, lo que incrementa su coste y dificulta su utilización a gran escala. Por ello el objetivo general del proyecto SESPer es estudiar perovskitas que contengan elementos más abundantes en la corteza terrestre (fundamentalmente Ca, Fe, y Mn) para identificar la perovskita de composición más adecuada para el almacenamiento térmico y llevar a cabo un estudio termodinámico integral que permite la evaluación precisa de la capacidad de almacenamiento de calor.

Referencias

E. Mastronardo, X. Qian, J. M. Coronado, S. M. Haile, The favourable thermodynamic properties of Fe-doped CaMnO3 for thermochemical heat storage J. Mater. Chem. A, (2020),8, 8503-8517. https://doi.org/10.1039/D0TA02031A

http://sesperproject.blogspot.com/p/project-description.html

Contacto

Juan M.  Coronado, Investigador del Grupo CSIC-ECI del Programa ACES2030-CM.

Coordina ACES2030-CM: Manuel Romero Álvarez. IMDEA Energía

 

Compartir:

Un comentario

  1. Me parece muy interesante los avances que existen sobre las CSP y las alternativas que tiene los estudios para su desarrollo, como son los sistemas de almacenamiento termoquímico (TCS) ; Dichos estudios tienen como objetivo utilizar energía ilimitada y limpia.

Deja un comentario