Archivo para la categoría ‘Actualidad (Noticias)’

El primer experimento con luz eléctrica en España

Autor: R. Escudero-Cid (Universidad Autónoma de Madrid)

En la noche del 2 de abril de 1851, el científico gallego Antonio Casares Rodríguez, procedió a la iluminación mediante un arco voltaico de un edificio público por primera vez en España en Santiago de Compostela, en el claustro del antiguo edificio central de la Universidad (hoy Facultad de Geografía e Historia) [1]. La realización de esta demostración pública en esta ciudad supuso un gran efecto desde el punto de vista educativo y divulgativo permitiendo a la sociedad compostelana de aquella época ser partícipe de un hito histórico y un gran acercamiento a la ciencia.

 La preparación científica y tecnológica no eran inaccesibles a otros científicos españoles de la época, pero los conocimientos específicos, los elementos materiales y la determinación que se precisaban reunir para llevar adelante el experimento no estaban al alcance de muchos. Pero estamos hablando de un científico que lideró otros eventos de gran trascendencia [2, 3].

El experimento se llevó a cabo esa noche de abril de 1851 [4] en el claustro del edificio central de la Universidad de Santiago de Compostela iluminando la Minerva de la Universidad y la torre de la Iglesia de la Compañía. El montaje consistía en pilas Bunsen en serie como fuentes de energía conectadas a un regulador Deleuil con dos electrodos de grafito encargados de generar el arco voltaico.

El experimento diseñado por Casares contaba con 50 pilas tipo Bunsen como fuentes de energía para conseguir la electricidad necesaria para la activación y el mantenimiento del arco voltaico. Estos dispositivos fueron inventados en 1940 por Robert Wilhem Bunsen a partir de una célula previa ideada por el científico galés William Robert Grove, el que posteriormente sería uno de los iniciadores de las pilas de combustible. La idea original de Grove consistía en un sistema compuesto por un ánodo de zinc en ácido sulfúrico diluido y un cátodo de platino sumergido en ácido nítrico concentrado y ambos separados por una olla de cerámica porosa. Robert Bunsen modificó el cátodo de platino por una pieza de grafito, material más barato, dando lugar a una reacción con un potencial algo menor. Las reacciones químicas llevadas a cabo por este dispositivo son:

 

dando lugar a un potencial teórico de 1.72 V, inferior al de las celdas de Grove de 1.9 V.

Otro de los elementos importantes del experimento de Casares fue el regulador Deleuil. Este equipo es el encargado de ir posicionando los electrodos de grafito encargados de la formación del arco voltaico tras el desgaste que sufren. En este caso consta de un electrodo fijo y otro montado sobre un sistema móvil regulado por un electroimán en serie con el propio arco. Este sistema también constaba de un espejo parabólico metálico que permitía concentrar la luz y proyectarla sobre un edificio, como se hizo aquella noche.

Por último, el elemento más importante para la generación de luz es el arco voltaico, que se obtiene tras la ionización del aire entre ambos electrodos de grafito. A pesar de su uso, el arco eléctrico no es apropiado como sistema de iluminación general porque, independientemente de cuestiones tecnológicas (como el sistema de producción eléctrica) y del coste económico, su brillo era excesivo, resultando insoportable incluso a una gran distancia. También ha de tenerse en cuenta que no fue hasta más de 25 años después cuando se inventó la lámpara incandescente que sería utilizada para la implantación generalizada de la iluminación eléctrica en ciudades a finales del siglo XIX.

 

Ilustración de un diseño similar al utilizado por Antonio Casares en su experimento [5].

Mediante el uso de estos equipamientos se procedió a iluminar la noche compostelana provocando gran expectación entre todos los presentes. Fue tanta la importancia del evento que un año más tarde, la noche del 24 de julio de 1852, previa a la celebración del día de Santiago, se repitió el experimento en una de las fachadas de la catedral, congregando a la mayor parte de la población de la ciudad. Sería entonces cuando un bibliotecario de la Universidad de Santiago dijera las palabras “a noite está varrida da terra” (la noche está barrida de la tierra), que pasaron a la posteridad gracias al relato de A. Cotarelo Valledor [6].

Referencias

[1] A. Díaz Pazos, Boletín das Ciencias (ENCIGA)75 (2012) 139.

[2] R. Cid, Anales de Química109 (2013) 27.

[3] R. Cid, Revista Española de Física28 (2014) 59.

[4] J. C. Alayo, J. Sánchez Millán, Técnica e ingeniería en España, VI. El Ochocientos. De los lenguajes al patrimonio, IFC – Real Academia de Ingeniería, Zaragoza, 2011.

[5] A. P. Deschanel, Elementary Treatise on Natural Philosophy, Part 3: Electricity and Magnetism, D. Appleton and Co., New York, 1878.

[6] A. Cotarelo Valledor, La chispa mágica, El Eco de Santiago, Santiago de Compostela, 1923.

Etiquetas:

La Concentración de Energía Solar: un mercado todavía pequeño pero que aprende rápido

Autora: Beatriz Lucio-Instituto IMDEA Energía

La reducción de costes que se ha dado en los sistemas para obtener electricidad fotovoltaica (PV, en inglés Photovoltaics) en los últimos diez años, ha provocado que se convierta en una de las opciones energéticas más económicas. Concretamente, en 2016 su capacidad global llegó a los 300 GW, con un crecimiento progresivo anual que supera el 30%. Por otro lado, la concentración de energía solar (CSP, en inglés Concentrating Solar Power) es una alternativa menos conocida, cuya implementación en el mercado empezó después que la PV en el año 2007. En 2016 la capacidad de la CSP alcanzó los 5 GW, pero se encuentran menos datos sobre la evolución de costes comparándola con la PV. Esto es debido a que los sistemas fotovoltaicos tienen dos componentes principales, módulo PV y convertidor, que se ofrecen actualmente en el mercado como producto de forma competitiva; mientras que los sistemas de concentración solar son más complejos. La tecnología más común de la CSP basada en colectores cilindro-parabólico consiste en un campo de colectores, un circuito para la transferencia del calor mediante un fluido que puede incluir el almacenamiento de energía y un bloque de potencia que convierte la energía térmica en electricidad. Existen a nivel mundial sólo unos pocos suministradores con la capacidad de asumir el riesgo financiero, donde el saber hacer representa la parte más valiosa de los proyectos. Para la mayoría de las instalaciones hay información disponible sobre las inversiones de forma global o de los ingresos por kWh, lo que hace que sea muy difícil llegar a una conclusión en términos económicos sobre cómo evoluciona el mercado de la CSP [1].

Un estudio reciente [2] ha identificado las distintas fases de desarrollo del mercado con todos los proyectos comerciales relacionados con la CSP (tanto sistemas cilindro-parabólico como de tipo torre), realizando una base de datos. En este estudio se demuestra que desde los últimos cinco años hay una clara evidencia de la reducción de costes para la CSP de cilindro-parabólico, aumentando los conocimientos al 25%. Estas cifras son superiores a las esperadas y similares a lo que han evolucionado a lo largo de 35 años los módulos de PV.

Referencias:

[1] R. Pitz-Paal. Nat. Energy 2, 17095 (2017).

[2] J. Lilliestam, M. Labordena, A. Patt, S. PfenningerNat. Energy 2, 17094 (2017).

 

Etiquetas:

Sostenibilidad y diversión

El colegio CEIPSO Maestro Rodrigo de Aranjuez es el primer centro educativo de España que cuenta con un centro de juegos infantil sostenible. El parque infantil genera energía sostenible a partir del movimiento de los columpios y balancines y además está fabricado con neumáticos.

Autora: Rebeca Sánchez-Universidad Rey Juan Carlos

Renault, con la colaboración de su Fundación Renault para la Movilidad Sostenible (FRMS), ha creado un parque infantil como respuesta a los 200.000 neumáticos fuera de uso que se generan en España cada año. Otra de las características importantes de este parque infantil, además de revalorizar un residuo, es que genera energía sostenible. En los columpios y balancines se han instalado dispositivos que transforman la energía cinética en electricidad, con la que se alimenta el sistema de riego y el hilo musical del centro educativo. Además, el parque infantil cuenta con paneles fotovoltaicos (12V) integrados en la arquitectura del parque para completar la generación de energía.

La puesta en marcha de este original parque se llevó a cabo el pasado mes de junio, coincidiendo con los campamentos de verano, y ha contado con la colaboración de Basurama (expertos en proyectos de reutilización creativa de residuos), y Creática (empresa encargada de dispositivos de recuperación de energía).     

El centro educativo Maestro Rodrigo ha acogido con tanto entusiasmo el nuevo parque infantil, que ha puesto en marcha una línea educativa en la que utilizan el juego y la diversión como herramienta de concienciación energética entre los más jóvenes. “En las escuelas sostenibles no nos conformamos solamente con transmitir conocimientos e ideas, sino que además las ponemos en práctica”, comenta el director del centro, Javier Pariente, tras recordar que son precisamente los niños “la fuerza de cambio más poderosa de esta sociedad”.

Fuente: Energynews

Etiquetas:

7° Edición del congreso “WORLD HYDROGEN TECHNOLOGY CONVENTION” – WHTC2017

Autora: Gisela Orcajo Rincón-Grupo de Ingeniería Química y Ambiental. Universidad Rey Juan Carlos

 

En este mes de julio se reunirá en Praga a comunidad científica de hidrógeno y pilas de combustible, en la séptima edición del congreso “World Hydrogen Technology Convention” – WHTC 2017, organizado por la plataforma tecnológica del hidrógeno checa y bajo el patrocinio de la Asociación Internacional del hidrógeno (“International Association for Hydrogen Energy” -IAHE-). El objetivo de este congreso es el de ofrecer una oportunidad única para compartir los últimos hallazgos y resultados en esta materia entre toda la audiencia académica, científica y empresarial.

El tema del congreso “El Futuro puede estar más cerca de lo que crees” (“The Future Might Be Closer Than You Think”), habla de la tendencia clara hacia la integración de las energías renovables y la tecnología del hidrógeno como punto clave para la implantación de sistemas 100% renovables. Este congreso es una oportunidad para aprender también acerca de las aplicaciones innovadoras del hidrógeno y las pilas de combustible, exploración de nuevos productos y encuentro de posibles proveedores, clientes y colaboradores. Allí se debatirán temas muy interesantes referidos a esta tecnología como: fundamentos y teoría de las pilas de combustible, transporte, aplicaciones estacionarias y portátiles, producción, almacenamiento de hidrógeno, simulación y modelado, motores de combustión interna de hidrógeno, regulación y seguridad, políticas y financiación de las tecnologías del hidrógeno. Al igual que en otras ediciones de este congreso, habrá sesiones plenarias muy interesantes, donde se analizarán los éxitos, las oportunidades y los desafíos de la economía del hidrógeno.

 

Etiquetas:

Celebracion de la 25th European Biomass Conference and Exhibition

La conferencia tuvo lugar del 12 al 15 de junio en Estocolmo (Suecia) y en ella se presentaron resultados del proyecto “Diseño y optimización de una biorrefineria sostenible basada en biomasa del olivar y de la industria del aceite de oliva: analisis tecno-económico y ambiental” (BIOROLSOS), financiado por el Ministerio de Economía y Competitividad, dentro del Plan Nacional I+D+I “Retos de Investigación” 2015-2017, y llevado a cabo en la Unidad de Biocarburantes del CIEMAT.

Autor: Paloma Manzanares -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT

A lo largo de más de 20 años, la European Biomass Conference and Exhibition (EU BC&E) ha combinado un simposio científico de alto nivel con una exposición industrial en el ámbito de la biomasa. Durante la Conferencia celebrada este año, se han discutido temas de interés para los mercados de la biomasa en áreas técnicas y de negocio, que abarcan desde la evolución de recursos hasta el desarrollo de políticas. El evento, en el que han participado más de 1.300 personas, ha tenido como objetivo potenciar un intercambio internacional de experiencias en políticas, investigación y desarrollo, fabricación e instalación, así como llegar a ser un escaparate de las últimas tecnologías. Además, la conferencia ha ampliado su alcance al tema de la bioeconomía, un sector con una estrecha conexión con la bioenergía, donde Suecia se ha convertido en un país líder.

La Unidad de Biocarburantes del Ciemat participó en dicha Conferencia presentado 3 posters y una comunicación oral. En el trabajo titulado “Assessing biomass resources from olive oil production in Spain” se mostraron los resultados obtenidos en el análisis a nivel nacional  de la producción de residuos asociados a la industria del aceite de oliva (hojas y orujillo), evaluando los volúmenes y localizaciones de su producción. Igualmente se ha determinado la generación anual a nivel nacional de los residuos asociados al cultivo del olivar. En otro trabajo titulado  “Valorization of extracted olive oil pomace residue through conversion into bioethanol and bioproducts” se expusieron los resultados obtenidos en la utilización del orujillo (residuo obtenido en la extracción del aceite de oliva) como materia prima para la obtención de etanol y bioproductos.

En la comunicación oral “Techno-Economic Evaluation of a Small Scale Integrated Biorefienery Based on Olive Tree Pruning” se presentó el diseño y la viabilidad tecno-economica de una biorrefinería mediante la aplicación del programa de modelización AspenPlus, utilizando los datos obtenidos a escala de laboratorio por la Unidad de Biocarburantes. En esta biorrefineria se obtendría no solo bioetanol, sino también azúcares, antioxidantes y electricidad.

Por otro lado y ya utilizando paja de cebada como materia prima se presentó el trabajo “Bioethanol and Xylooligosaccharides Production from Agricultural Residue” en el que se presentaron los resultados obtenidos en la obtención de xilooligosacaridos en el pretratamiento por explosión a vapor de paja de cebada. Estos compuestos podrían ser utilizados como prebióticos en la industria farmacéutica lo que revalorizaría el proceso de producción de etanol a partir de dicha materia prima.

Etiquetas:

Marruecos y España: ejemplos opuestos de Planificación Energética

Autor: Eduardo Zarza Moya-CIEMAT

La necesidad de hacer frente tanto al importante incremento en el consumo de energía primaria que se prevé a medio plazo a nivel mundial, como los problemas medioambientales que el uso masivo de los combustibles fósiles ha provocado, han hecho que la Energía se haya convertido en un tema clave. No obstante, el modo en que los distintos países enfocan el problema energético es muy diferente, siendo España y Marruecos buenos ejemplos de esta disparidad de estrategias y enfoques.

Mientras en España es evidente, desde hace muchos años, la necesidad de un Pacto de Estado entre los principales partidos políticos para definir una estrategia energética a medio y largo plazo, que acabe con los continuos bandazos que los diversos Gobiernos vienen dando desde hace varias décadas, en Marruecos existe una planificación energética, seria, sensata y coherente, que permitirá a ese país reducir de forma importante su dependencia energética del exterior, a la vez que le dotará de un sector eléctrico altamente sostenible y descarbonizado, basado en una importante contribución de dos energías renovables que son abundantes en ese país: la solar y la eólica.

Resulta difícil comprender por qué a los dos principales partidos políticos de España, PP y PSOE, les resulta tan difícil llegar a acuerdos sobre aquellos temas de interés nacional que difícilmente pueden acometerse con éxito y coherencia si no se basan en un Pacto de Estado que defina claramente el marco regulador de las decisiones que vayan tomando los sucesivos gobiernos. La falta de un Pacto de Estado en materia energética nos ha conducido a una situación difícil de entender, por el cumulo de decisiones faltas de acierto y, en muchas ocasiones, contradictorias. En España, incluyendo las islas, tenemos actualmente unos 105 GWe de potencia instalada, de los cuales las porciones mayores corresponden a las plantas de ciclo combinado (25,3 GWe), parques eólicos (23,15 MWe), hidráulica (21 GWe), carbón (11 GWe), nuclear (8 GWe) y cogeneración (7,2 GWe). El resto se lo reparten las demás tecnologías (fotovoltaica, termosolar, etc.). Frente a esta potencia total instalada se sitúa el consumo eléctrico máximo histórico, que tuvo lugar en el año 2007 y fue de 45,45 GWe. Estas cifras muestran que en España hay un enorme exceso de potencia instalada, lo cual unido a unas pobres interconexiones con los países vecinos, provoca que una gran parte del parque eléctrico nacional esté inactivo o, en el mejor de los casos, muy por debajo de un funcionamiento rentable, como es el caso de los ciclos combinados y las centrales de carbón.

La pregunta que inmediatamente surge al ver estas cifras es ¿cómo se ha llegado en España a esta absurda situación?. A esta pregunta se puede responder de una forma clara y concisa: la causa de esta situación ha sido la falta de una planificación energética. Durante los gobiernos de Aznar se apostó principalmente por las centrales de ciclo combinado, realizándose una inversión  superior a los 13.000 millones de Euros, mientras que posteriormente el gobierno de Zapatero aposto fuertemente por las energías renovables e impulsó el parque eólico, fotovoltaico y termosolar. En total se invirtió en poco más de diez años unos 70.000 millones de euros. !Que lástima de dinero tan mal invertido¡. Con una adecuada planificación energética se habría realizado una inversión más productiva y rentable para España.

Resulta evidente que los dos principales partidos políticos, PP y PSOE, son incapaces de poner el interés nacional en materia energética por encima de sus intereses de partido. Algo parecido ocurre con la Educación, otro aspecto en el que se necesita con urgencia un Pacto de Estado que acabe con los vaivenes sin sentido y los dislates que gobierno tras gobierno cometen. Basta tener en cuenta lo sorprendente que resulta que haya tantas Historias de España como Comunidades Autónomas, de modo que, dependiendo de la Comunidad Autónoma en la que estudies, te contarán una Historia u otra, cuando la verdad es que solo existe una Historia y debería ser contada de igual forma en todas las Comunidades Autónomas. Pero volvamos al tema de la Energía, que es el objeto de este artículo.

No deja de ser sorprendente, y a la vez aleccionador, que las autoridades de Marruecos demuestren tener las ideas mucho más claras que los gobernantes españoles en materia de Energía. Marruecos carece de las reservas de petróleo y gas natural de su vecino argelino, y sufre una dependencia total de hidrocarburos. En 2009, Marruecos importaba el 95% de la energía que consumía. Pero decidió cambiar esta situación y definió una política energética clara y seria, tendente a reducir de forma importante su dependencia energética exterior, a la vez que decidió apostar por el uso de dos fuentes energéticas renovables abundantes en Marruecos: la eólica y la solar.

El 2 de noviembre de 2009, el entonces Ministro de Economía de Marruecos, Salahadin Mezuar, presennto el llamado Plan Solar de Marruecos, que preveía la construcción de 2000 MWe de centrales solares (fotovoltaicas y termosolares). El objetivo de Mohamed VI es conseguir que en 2030 el 52% de la capacidad eléctrica del país proceda de la energía renovable, frente al 34% actual. Para llevar a cabo con éxito su Plan Solar, el gobierno marroquí creó en marzo de 2010 la Agencia Marroquí para la Energía Solar, MASEN (Moroccan Agency for Solar Energy, http://masen.org.ma/). MASEN es una compañía con fondos públicos, cuyo capital es aportado por el Estado de Marruecos, el Fondo Hassan II para el Desarrollo Social y Económico, la Oficina Nacional de Agua y Electricidad (ONE) y la Sociedad de Inversiones Energéticas (SIE). Los tres objetivos principales de MASEN son: el desarrollo de centarles solares, contribuir al desarrollo de una industria solar nacional y asegurar una adecuada coordinacion entre los planes regionales e internacionales.

Fruto del buen hacer de MASEN y de un plan energético claro, Marruecos está construyendo en la actualidad en Ouarzazate las centrales termosolares NOOR-II y III, que junto con NOOR-I, ya en funcionamiento desde principios de 2016, tendrán una potencia total instalada de 500 MWe. El Plan Solar de Marruecos se basa en un adecuado equilibrio entre dos tecnologías solares que son claramente complementarias: la fotovoltaica y la termosolar. Las centrales  fotovoltaica producirán electricidad a un precio muy reducido durante las horas de Sol, mientras que las centrales termosolares aportarán con su alto grado de gestionabilidad la producción eléctrica necesaria por la noche, consiguiendo de este modo un precio medio de la electricidad inferior a los 0,08 €/kWh, que es un precio bastante razonable y competitivo. De este modo, y basado en un estudiado equilibrio entre la electricidad fotovoltaica y la termosolar, Marruecos contará muy pronto con electricidad de origen solar a un precio competitivo, que unido a la producción eólica de las plantas construidas en el Norte y en la costa oeste, reducirán de forma importante su dependencia energética y creará una industria nacional importante.

La coherencia y visión a largo plazo de la autoridades marroquíes en materia energética es aún más evidente si tenemos en cuenta otras medidas adoptadas por dichas autoridades con el objetivo de avanzar de forma clara y sin titubeos hacia el objetivo marcado de conseguir reducir el actual consumo de combustibles fósiles. Algunas de dichas medidas han sido tremendamente impopulares, como la eliminación de los subsidios públicos a los combustibles derivados del petróleo en el año 2012, que provocó una subida del 20% de la gasolina en Marruecos. Pero el gobierno marroquí no se ha guiado por la popularidad o impopularidad de sus decisiones, sino por la coherencia de las mismas con el objetivo energético nacional definido.

En España, en cambio, seguimos sin hacer análisis energéticos serios, y el Gobierno sigue dando brochazos sueltos y descoordinados sobre el lienzo energético nacional, produciendo de este modo un cuadro de pésima calidad. En España seguimos poniendo parches, buscando simplemente lo más barato, pues lo único que se persigue es cumplir el objetivo comprometido en cuanto a producción de electricidad renovable, como ha quedado de manifiesto en la reciente subasta de energías renovables realizada por el actual gobierno, y en la nueva subasta ya anunciada el 23 de mayo por nuestro presidente, Mariano Rajoy. En España no tenemos en cuenta ni los beneficios sociales, ni la gestionabilidad de las diversas opciones tecnológicas, pues las decisiones tomadas en materia energética durante las últimas décadas evidencian una alta dosis de improvisación y falta de visión de futuro. Y por si esto no fuera suficiente, esta falta de visión de futuro y coordinación se ve agravada por las decisiones tomadas por el Ministerio de Hacienda que impiden a centros nacionales de prestigio internacional, como la Plataforma Solar de Almería, poder ejecutar sus proyectos internacionales plurianuales de I+D que cuentan con fondos europeos, lo cual obligará a tener que devolver a Bruselas dichos fondos, con la consiguiente pérdida de puestos de trabajo e inversión en España, mientras que Marruecos nos da una lección de coherencia y seriedad en materia energética. Ojala que la situación cambie y se logre en España el tan necesitado Pacto por la Energía.

Etiquetas:

Récord de renovables en 2016, pero queda trabajo por hacer

Autora: Elena Díaz-Instituto IMDEA Energía

El pasado 7 de Junio la asociación internacional sin ánimo de lucro REN21 publicó el informe sobre el estado global de las energías renovables durante 2016 y principios de 2017, lleno de buenas noticias.

La instalación de nuevas plantas de generación eléctrica de fuentes renovables alcanzó un nuevo récord en 2016, con un total 161 GW que aumentan la capacidad total instalada en un 9% con respecto al año anterior. La tecnología con mayor aumento es la solar fotovoltaica, que supone un 47% de las nuevas instalaciones, a la que siguen la eólica (34%) e hidráulica (15,5%). Además, es el quinto año consecutivo en el que la inversión en energías renovables duplica la de generación por combustibles fósiles. Los países que más han invertido en generación renovable son China y Estados Unidos aunque si se normaliza según el producto interior bruto pasan a serlo Bolivia y Senegal. En la Figura 1 se muestra esta clasificación global junto con la clasificación por tecnologías.

 

Figura 1: Clasificación de los 5 países con mayores inversiones en generación renovable, total y por tecnología (2016).

El 24.5% de la electricidad producida en 2016 fue a partir de fuentes renovables, principalmente hidroeléctrica (Figura 2). Esto, unido al descenso en el uso del carbón y al aumento en la eficiencia energética, ha conseguido mantener estables las emisiones de CO2 a la atmósfera, a pesar de que la tanto la economía global como la demanda energética han aumentado. Esta tendencia refleja claramente el desacoplamiento entre el desarrollo económico y las emisiones, un paso importante en el camino de reducción de emisiones necesario para evitar un aumento mayor de 2 ºC en la temperatura global del planeta.

 

Figura 2: Participación de las energías renovables en la producción eléctrica global (2016).

Es común que, al hablar de energías renovables, salgan a relucir inconvenientes como la falta de gestionabilidad o el excesivo precio. Sin embargo, en este informe se los considera mitos ya que ha habido numerosos avances en ambas direcciones. Se están produciendo cuantiosos progresos y novedades en el ámbito del almacenamiento y la gestionabilidad de forma que en varios países se han podido administrar picos de generación renovable de alrededor o incluso superando el 100%, como Dinamarca o Alemania. Además, los precios están cayendo de forma rápida y continua para todas las tecnologías, en especial fotovoltaica y eólica para las que se han registrado precios de 0.05$/kWh. Es por esto que el argumento de que las energías renovables son aplicables sólo en países ricos ya no es válido. La gran mayoría de las centrales renovables se instalan en países en desarrollo y su participación irá en aumento. Alrededor de 50 de estos países se han comprometido a llegar al 100% de renovables, y no son los únicos. Durante 2016 más de 30 empresas se han unido a RE100, una iniciativa global en la que se comprometen a realizar sus actividades con un 100% de electricidad renovable. Esto demuestra que, además de las ventajas medioambientales, tiene sentido desde el punto de vista económico.

 

Sin embargo, a pesar de todas estas buenas noticias, la transición energética no se está produciendo a la velocidad necesaria como para llegar a los objetivos del Acuerdo de París. Aunque la capacidad instalada aumenta, las inversiones fueron un 23% menores en 2016 que en 2015 y además se centran en energía fotovoltaica y eólica, dejando de lado el resto de tecnologías también muy necesarias para alcanzar las metas fijadas. Por otro lado, se hacen muchos esfuerzos en el ámbito de generación eléctrica pero menos hacia el transporte, calefacción y frío. Finalmente, la existencia de subsidios a los combustibles fósiles es uno de los factores que ralentiza el avance. Globalmente, por cada dólar invertido por los gobiernos en energías renovables, se invierten 4 en perpetuar la dependencia de los combustibles fósiles.

 

La eliminación de esos subsidios es una de las medidas que se proponen en el informe para intentar acelerar la transición. Se plantean otros propuestas, todas relacionadas con la eliminación de la supremacía de las fuentes fósiles para generación de energía, como la creación de políticas que aboguen por las energías renovables, o la desviación del esfuerzo desde el estudio de la carga base de origen fósil hacia la investigación de gestionabilidad y almacenamiento para que las renovables puedan actuar como tal.

 

Nos encontramos en un buen momento para las energías renovables. Se confirma su buen funcionamiento, crecimiento y competitividad frente a las tecnologías convencionales emisoras de gases de efecto invernadero. Sin embargo, debemos trabajar en consolidar y acelerar su crecimiento para alcanzar los objetivos de emisiones en un futuro cercano.

 

Más información:

Etiquetas:

13th Sollab doctoral colloquium on solar concentrating technologies

Autor: Lucía Arribas-Instituto IMDEA Energía

 

Entre los días 15 y 17 de mayo tuvo lugar en Berlín el encuentro anual de jóvenes investigadores en el ámbito de tecnologías de energía solar concentrada, en el que participan investigadores de este ámbito de distintos países de la Unión Europea.

Este coloquio está enmarcado dentro del proyecto Sollab (alianza de laboratorios europeos en sistemas de energía solar térmica concentrada) en el que participan: la Plataforma Solar de Almería (perteneciente al CIEMAT), el DLR (Centro aeroespacial alemán), ETH (Escuela Politécnica Federal de Zúrich, Suiza) y PROMES (unidad de investigación del CNRS, Centro Nacional para la Investigación Científica de Francia). Cada año se encarga una de las instituciones de organizarlo en su país.

Los estudiantes de doctorado de las 4 instituciones presentan sus trabajos, y, además, se invita a estudiantes de otras instituciones que trabajen en este ámbito, como es el caso de la Unidad de Procesos de Alta Temperatura del Instituto IMDEA Energía.

Este año la organización le correspondía al DLR, teniendo lugar en una de las ciudades más visitadas de Europa, Berlín.

Durante los 3 días del coloquio, se presentaron 35 trabajos de tesis enmarcados en los siguientes ámbitos:

  • Termoquímica solar
  • Tratamiento de agua y fotoquímica solar
  • Fotovoltaica concentrada
  • Electroquímica solar
  • Almacenamiento térmico de energía
  • Materiales, medidas y caracterización
  • Sistemas de concentración solar

Este evento anual sirve para poner en común los últimos avances en el ámbito de la energía solar concentrada y, además, es útil para conocer a los investigadores del sector y como entrenamiento en presentaciones para los estudiantes de doctorado.

De la Unidad de Procesos de Alta Temperatura del Instituto IMDEA Energía participaron dos investigadoras. Elena Díaz, que presentó su trabajo bajo el título “Integration of fuel cells in solar thermal plants” y Lucía Arribas con “Directly irradiated fluidized bed reactor for solar thermochemical applications”.

Etiquetas:

Comienza el proyecto WASTE2BIO

Con la reunión de lanzamiento celebrada el pasado mes de abril en las instalaciones de IMECAL, se da por iniciado el proyecto WASTE2BIO “Valorization of urban WASTEs TO new generation of BIOethanol” 

Autor: Jose Miguel Oliva  -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT

El pasado mes de abril tuvo lugar la reunión de lanzamiento del proyecto WASTE2BIO “Valorization of urban WASTEs TO new generation of BIOethanol”  (Valorización de residuos urbanos para la producción de bioetanol).

El proyecto, coordinado por IMECAL, está financiado por  ERA-NET Cofund Bioenergy Sustaining the Future 3 (BESTF3) dentro del H2020. Se trata de una  convocatoria internacional conjunta que financia proyectos innovadores en bioenergía con alto componente demostrador liderados por la industria.

El consorcio lo forman cuatro participantes, dos PYMES: IMECAL (Industrias Mecánicas Alcudia S.A. (España) y EXERGY Ldt. (Reino Unido) y dos centros de investigación: la unidad de Procesos Biotecnológicos del IMDEA Energía y la Unidad de Biocarburantes del CIEMAT.

El proyecto tiene una duración de 3 años y tiene como objetivo demostrar y validar un proceso global de recuperación de energía partir de la fracción orgánica de los residuos sólidos urbanos mediante su transformación en bioetanol con el proceso PERSEO Bioethanol® y biogás con objeto de valorizar dichos residuos reduciendo el coste energético e impacto durante su tratamiento.

En el proyecto se proponen varias líneas de trabajo como  la mejora de los diferentes procesos y etapas involucrados en la valorización de la fracción orgánica de los RSU como son el pretratamiento con el fin de obtener una fracción orgánica libre de inertes, la producción de bioetanol, la digestión anaerobia del residuo obtenido tras la fermentación y la producción de fertilizantes. Igualmente se pretende una validación y demostración del proceso a escala semi-industrial que incluya una integración del proceso una evaluación tecno-económica y energética y un análisis de sostenibilidad. Por último se pretende una integración de los resultados del proyecto en el nuevo modelo de tratamiento de RSU definiendo la estrategia de explotación y el modelo de negocio.

Así pues este proyecto, con una aproximación tecnológica cercana al mercado,  pretendedesarrollar un proceso global que disminuya los costes de la gestión de residuos sólidos urbanos respecto a los tratamientos convencionales en un 20%, al mismo tiempo que se reduce el volumen de residuos enviados a vertedero mediante su valorización en bioetanol, biogás y biofertilizantes.

 

 

Etiquetas:

Luz solar para producir hidrógeno renovable a partir de biomasa lignocelulósica

Autor: J.L.G. Fierro, Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid

En un estudio reciente realizado en la Universidad de Cambridge se ha puesto de manifiesto que la biomasa sin procesar (serrín, hojas de vegetales, bálago de cereal) se puede convertir fácilmente  en hidrógeno limpio mediante iluminación con luz solar una disolución acuosa alcalina en la que permanece la biomasa en suspensión y a la que se añaden partículas de un fotocatalizador. El proceso opera en condiciones muy suaves, esto es, presión y temperatura ambientales, lo que contrasta con la tecnología convencional de obtención de hidrógeno a partir de biomasa mediante gasificación. La desventaja de este proceso es que la velocidad de formación de hidrógeno es muy baja.

La lignocelulosa, que es el componente principal de la biomasa del planeta, fue el origen de las reservas de petróleo. Este precursor sometido bajo los estratos sedimentarios de la corteza terrestre a elevadas presiones y temperaturas, en ausencia de aire,  durante millones de años generó las mezclas de hidrocarburos que constituyen el crudo que utilizamos en la actualidad para la producción de combustibles de transporte. Pero las reservas de petróleo han ido disminuyendo de forma muy significativa en las últimas décadas. Esto ha hecho que en la actualidad se exploren vías de transformación del material lignocelulósico en la fabricación de combustibles sintéticos y productos químicos.

La tecnología convencional de fabricación de combustibles sintéticos a partir de biomasa incluye dos etapas: una primera de gasificación para producir una mezcla gaseosa de CO y H2, y una segunda de transformación de esta mezcla en hidrocarburos. El proceso global requiere la construcción de plantas  grandes, lo que implica un coste elevado, a lo que hay que añadir una eficiencia del proceso limitada.

Recientemente un equipo de investigación del laboratorio Christian Doppler de la Universidad de Cambridge, Reino Unido, ha desarrollado una metodología relativamente sencilla que permite extraer el hidrógeno presente en la biomasa lignocelulósica en un solo paso en condiciones ambientales, esto es, temperatura y presión ambiental con el único recurso de la luz solar. Esta tecnología, que ha sido publicada en la revista Nature Energy 2, 17021 (2017) (doi:10.1038/nenergy.2017.21) consiste básicamente en un simple proceso de conversión fotocatalítica. Se añaden partículas del fotocatalízador en la disolución acuosa alcalina y se mantiene en suspensión conjuntamente con la propia biomasa. El conjunto se ilumina con una lámpara que simula la luz solar. Los fotones absorbidos en las partículas de fotocatalizador son capaces de realizar la transformación del material polimérico de la biomasa y generar hidrógeno libre de monóxido de carbono u otras impurezas.

 

Figura 1. Hoja de papel colocada en una disolución alcalina iluminada con luz solar.

La limitación del proceso en la actualidad reside en la baja producción de hidrógeno. Resulta evidente que se requieren escalados sucesivos para establecer si la metodología de laboratorio alcanza un desarrollo industrial. De hecho se ha realizado una patente de aplicación de la prueba de concepto.

Bibliografía

D.W. Wakerley, M.F. Kuehnel, K.L. Orchard, K.H. Ly, T.E. Rosser and E. Reisner, Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst, Nature Energy 2, 1 7021 (2017) (doi:10.1038/nenergy.2017.21)

Etiquetas: