Archivo para la categoría ‘Biomasa’

Comienza el proyecto WASTE2BIO

Con la reunión de lanzamiento celebrada el pasado mes de abril en las instalaciones de IMECAL, se da por iniciado el proyecto WASTE2BIO “Valorization of urban WASTEs TO new generation of BIOethanol” 

Autor: Jose Miguel Oliva  -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT

El pasado mes de abril tuvo lugar la reunión de lanzamiento del proyecto WASTE2BIO “Valorization of urban WASTEs TO new generation of BIOethanol”  (Valorización de residuos urbanos para la producción de bioetanol).

El proyecto, coordinado por IMECAL, está financiado por  ERA-NET Cofund Bioenergy Sustaining the Future 3 (BESTF3) dentro del H2020. Se trata de una  convocatoria internacional conjunta que financia proyectos innovadores en bioenergía con alto componente demostrador liderados por la industria.

El consorcio lo forman cuatro participantes, dos PYMES: IMECAL (Industrias Mecánicas Alcudia S.A. (España) y EXERGY Ldt. (Reino Unido) y dos centros de investigación: la unidad de Procesos Biotecnológicos del IMDEA Energía y la Unidad de Biocarburantes del CIEMAT.

El proyecto tiene una duración de 3 años y tiene como objetivo demostrar y validar un proceso global de recuperación de energía partir de la fracción orgánica de los residuos sólidos urbanos mediante su transformación en bioetanol con el proceso PERSEO Bioethanol® y biogás con objeto de valorizar dichos residuos reduciendo el coste energético e impacto durante su tratamiento.

En el proyecto se proponen varias líneas de trabajo como  la mejora de los diferentes procesos y etapas involucrados en la valorización de la fracción orgánica de los RSU como son el pretratamiento con el fin de obtener una fracción orgánica libre de inertes, la producción de bioetanol, la digestión anaerobia del residuo obtenido tras la fermentación y la producción de fertilizantes. Igualmente se pretende una validación y demostración del proceso a escala semi-industrial que incluya una integración del proceso una evaluación tecno-económica y energética y un análisis de sostenibilidad. Por último se pretende una integración de los resultados del proyecto en el nuevo modelo de tratamiento de RSU definiendo la estrategia de explotación y el modelo de negocio.

Así pues este proyecto, con una aproximación tecnológica cercana al mercado,  pretendedesarrollar un proceso global que disminuya los costes de la gestión de residuos sólidos urbanos respecto a los tratamientos convencionales en un 20%, al mismo tiempo que se reduce el volumen de residuos enviados a vertedero mediante su valorización en bioetanol, biogás y biofertilizantes.

 

 

Etiquetas:

Luz solar para producir hidrógeno renovable a partir de biomasa lignocelulósica

Autor: J.L.G. Fierro, Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid

En un estudio reciente realizado en la Universidad de Cambridge se ha puesto de manifiesto que la biomasa sin procesar (serrín, hojas de vegetales, bálago de cereal) se puede convertir fácilmente  en hidrógeno limpio mediante iluminación con luz solar una disolución acuosa alcalina en la que permanece la biomasa en suspensión y a la que se añaden partículas de un fotocatalizador. El proceso opera en condiciones muy suaves, esto es, presión y temperatura ambientales, lo que contrasta con la tecnología convencional de obtención de hidrógeno a partir de biomasa mediante gasificación. La desventaja de este proceso es que la velocidad de formación de hidrógeno es muy baja.

La lignocelulosa, que es el componente principal de la biomasa del planeta, fue el origen de las reservas de petróleo. Este precursor sometido bajo los estratos sedimentarios de la corteza terrestre a elevadas presiones y temperaturas, en ausencia de aire,  durante millones de años generó las mezclas de hidrocarburos que constituyen el crudo que utilizamos en la actualidad para la producción de combustibles de transporte. Pero las reservas de petróleo han ido disminuyendo de forma muy significativa en las últimas décadas. Esto ha hecho que en la actualidad se exploren vías de transformación del material lignocelulósico en la fabricación de combustibles sintéticos y productos químicos.

La tecnología convencional de fabricación de combustibles sintéticos a partir de biomasa incluye dos etapas: una primera de gasificación para producir una mezcla gaseosa de CO y H2, y una segunda de transformación de esta mezcla en hidrocarburos. El proceso global requiere la construcción de plantas  grandes, lo que implica un coste elevado, a lo que hay que añadir una eficiencia del proceso limitada.

Recientemente un equipo de investigación del laboratorio Christian Doppler de la Universidad de Cambridge, Reino Unido, ha desarrollado una metodología relativamente sencilla que permite extraer el hidrógeno presente en la biomasa lignocelulósica en un solo paso en condiciones ambientales, esto es, temperatura y presión ambiental con el único recurso de la luz solar. Esta tecnología, que ha sido publicada en la revista Nature Energy 2, 17021 (2017) (doi:10.1038/nenergy.2017.21) consiste básicamente en un simple proceso de conversión fotocatalítica. Se añaden partículas del fotocatalízador en la disolución acuosa alcalina y se mantiene en suspensión conjuntamente con la propia biomasa. El conjunto se ilumina con una lámpara que simula la luz solar. Los fotones absorbidos en las partículas de fotocatalizador son capaces de realizar la transformación del material polimérico de la biomasa y generar hidrógeno libre de monóxido de carbono u otras impurezas.

 

Figura 1. Hoja de papel colocada en una disolución alcalina iluminada con luz solar.

La limitación del proceso en la actualidad reside en la baja producción de hidrógeno. Resulta evidente que se requieren escalados sucesivos para establecer si la metodología de laboratorio alcanza un desarrollo industrial. De hecho se ha realizado una patente de aplicación de la prueba de concepto.

Bibliografía

D.W. Wakerley, M.F. Kuehnel, K.L. Orchard, K.H. Ly, T.E. Rosser and E. Reisner, Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst, Nature Energy 2, 1 7021 (2017) (doi:10.1038/nenergy.2017.21)

Etiquetas:

Biorrefinería multifuncional: Múltiples bioproductos a partir de residuos de poda y limpieza de jardines. Proyecto BIO_LIGWASTE

Autor: Enrique Cubas-Instituto IMDEA Energía

La limpieza y poda de jardines genera una gran cantidad de residuos, llegando incluso a alcanzar valores de 1,5 kg/m2 de zona verde. Tradicionalmente, los residuos de poda y limpieza de jardines han terminado depositados en vertederos o se han destinado a la producción de compost o material bioestabilizado, los cuales tienen un bajo valor añadido y un mercado muy reducido. Por ello, una atractiva alternativa para el aprovechamiento de este residuo rico en materia orgánica es la producción de biocombustibles y bioproductos de alto valor añadido en una biorrefinería.

En ese contexto, el objetivo del proyecto BIO_LIGWASTE es estudiar la valorización de los residuos generados en la limpieza de parques y jardines para producir bioetanol y otros bioproductos como el ácido láctico y el bio-oil.

Debido a la naturaleza recalcitrante de esta biomasa, es necesaria la aplicación de un pretratamiento en el proceso de producción. Como resultado del pretratamiento, se genera una fracción sólida que contiene la celulosa y la lignina, y una fracción líquida rica en xilosa y compuestos de degradación. La fracción celulósica del material se aprovechará para la producción de bioetanol a través de un proceso de fermentación alcohólica. Para ello, las levaduras consumirán la glucosa liberada en la hidrólisis enzimática por la acción de las enzimas celulolíticas. A la fracción de lignina, la cual no es fermentable, se le aplicará un tratamiento de pirólisis rápida catalítica para la obtención de un bio-oil. Por otro lado, la fracción hemicelulósica rica en xilosa, se empleará en la producción bacteriana de ácido láctico.

 

El bioetanol lignocelulósico presenta una reducción neta de emisiones de CO2 respecto a los carburantes de origen fósil y a los biocombustibles procedentes de materias amiláceas y azucaradas. Además, su producción no supone competencia en el uso del suelo y recursos agrícolas con el mercado alimentario. Este combustible es compatible con las infraestructuras actuales y su adición para la formulación de mezclas con gasolina es muy recomendable e incluso está legislado como obligatorio en ciertos países. El bio-oil se puede emplear como biocombustible y como fuente de productos aromáticos. Por último, el ácido láctico presenta un gran interés en la actualidad debido a sus múltiples aplicaciones. Se utiliza como conservante en la industria alimentaria, como emulsificante en la industria farmacéutica y cosmética y, sobre todo, como building block para la producción de sustancias químicas y de materiales biodegradables como el ácido poliláctico.

Como promueve el programa RETOS-COLABORACIÓN del Ministerio de Economía y Competitividad, en el proyecto BIO_LIGWASTE se hace patente la cooperación entre empresas y centros públicos de investigación. Por ello, entre los integrantes del consorcio, se encuentran TETma (Técnicas y Tratamientos Medioambientales), coordinador del proyecto y empresa líder en el sector de gestión de Residuos Sólidos Urbanos; centreVERD, empresa dedicada al sector de la jardinería; CIEMAT, organismo público de investigación; e IMDEA Energía, centro de investigación del gobierno regional de la Comunidad de Madrid que realiza actividades de I+D relacionadas con la energía.

El éxito de este proyecto permitirá validar el concepto de biorrefinería multifuncional con residuos de poda, además de la puesta a punto de un sistema de tratamiento de residuos capaz de procesar 10.000 toneladas al año, generando energía limpia y materiales avanzados.

Etiquetas:

Valorización del residuo de la paja de arroz: Proyecto WALEVA

Autor: Marta Paniagua-URJC

El proyecto WALEVA tiene como objetivo demostrar la viabilidad de la valorización del residuo de la paja de arroz en ácido levulínico. Para ello se ha construido una planta piloto situada en el Centro Tecnológico José Lladó de Técnicas Reunidas (San Fernando de Henares). El pasado 16 de marzo se celebró un Workshop y una visita a la planta.

España es el 2º productor de arroz de la UE, siendo la región de Extremadura la 2ª productora nacional (23 % – 25000 ha). Se generan 0,8 toneladas de paja por cada tonelada de arroz producida, por lo que los agricultores disponen de un gran volumen de estos residuos, que prácticamente no cuentan con ningún uso comercial (baja digestibilidad y alto contenido en silicio). Por tanto, su principal salida en la actualidad es la quema, emitiendo de esta manera gran cantidad de dióxido de carbono a la atmósfera (4,1 millones de toneladas de CO2/año en la UE).

El proyecto Waleva surge como una posible solución a este problema, cuyo objetivo principal es el desarrollo de un proceso de transformación en ácido levulínico, compuesto químico con gran variedad de aplicaciones en multitud de sectores industriales, incluyendo el farmacéutico, los biocombustibles, el químico y el alimentario.

Dentro del proyecto WALEVA:

  • El Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX) se encarga de la logística de la recogida de la paja, su caracterización físico-química y el estudio de las condiciones óptimas de almacenamiento.
  • Técnicas Reunidas se encarga de desarrollar el proceso de transformación de la paja en ácido levulínico a escala semi-industrial, el diseño y construcción de módulos de almacenamiento y de planta piloto así como el estudio de la viabilidad económica y energética del proceso.
  • La Federación Empresarial de la Industria Química Española (FEIQUE) lleva a cabo la divulgación de resultados a nivel europeo, nacional y regional.

Los principales objetivos de proyecto son:

  • El escalado del proceso WALEVA y el diseño y la construcción de una planta piloto para la demostración de la tecnología.
  • La valorización de un residuo agrícola de complejo tratamiento como es la paja de arroz.
  • Demostrar la viabilidad tecno-económica y ambiental de la tecnología desarrollando a nivel conceptual una planta a escala industrial.

Dicho proyecto está financiado por LIFE, instrumento financiero de la UE que apoya proyectos de carácter ambiental, de conservación de la naturaleza y de cambio climático en toda la UE.

La planta piloto situada en el Centro Tecnológico José Lladó de Técnicas reunidas cuenta con una capacidad de 500 kg paja de arroz/mes y una producción de 150 g de ácido levulínico por hora. El rendimiento esperado es del 18-22% en ácido levulínico con una pureza del 95-98%.

Fuente: http://waleva.eu/es/

Etiquetas:

Conferencia Europea de Biomasa

El próximo Junio se celebrará en Estocolmo la “25th European Biomass Conference and Exhibition. Esta Conferencia es la de mayor importancia en Biomasa y Bioenergía de Europa, donde se muestran los últimos avances científicos y tecnológicos. Además presenta una amplia exhibición en la que numerosos fabricantes, proveedores y distribuidores ponen de manifiesto sus novedades tecnológicas.

 Autor: [Felicia Sáez -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT]

 La Conferencia está organizada en cinco áreas temáticas encauzadas al aprovechamiento energético de la biomasa. Dichos áreas técnicas incluyen los diversos recursos biomásicos, tecnologías de conversión para la obtención de calor y/o electricidad, tecnología de conversión para la obtención de biocarburantes y bioproductos y el área de política, mercado y sostenibilidad.

 La Unidad de Biocarburantes de Ciemat, que participa regularmente en las ediciones de este Congreso, presentará su contribución con tres trabajos de investigación, cuyos títulos son: “Bioethanol and Xylooligosaccharides Production from Agricultural Residue”, “Valorization of extracted olive oil pomace residue through conversion into bioetanol and

Bioproducts” y “Assessing biomass resources from olive oil production in Spain”

Etiquetas:

Avances en la tecnología de pirolisis flash de biomasa

[Autor: Juan M. Moreno-Investigador Senior del Instituto IMDEA Energía]

En el mes de octubre pasado se publicó la última newsletter del Task 34 de IEA Bioenergy. (http://task34.ieabioenergy.com/wp-content/uploads/2016/10/Issue-39-Task-34-Newslettter-Oct-2016.pdf) En esta publicación se recogen entre otras, noticias relativas a desarrollo del mercado de bio oil (la elaboración de una norma europea ( EN 16900) para uso de bio-oil de pirólisis en calderas industriales y  nuevo proyecto H2020 para utilización de bio oil en calefacción residencial ( Residue2Heat)) y al proceso y mejoras tecnológicas del mismo (base de datos actualizada con las plantas demo de pirólisis en el mundo,  nuevo desarrollo de ECN de un  proceso integrado ( PYRENA) de pirólisis catalítica y  nueva instalación a escala piloto para producción de hidrocarburos en proyecto del DoE).

Norma EN16900: La aplicación de la tecnología de pirólisis flash para conversión de biomasa en líquidos cuenta en Europa con dos plantas comerciales, una en Finlandia (Fortum) y otra en Holanda (Empyro) que son las primeras de su categoría.  La fracción líquida del proceso, conocida por sus siglas en inglés como Fast pyrolysis bio oil (FPBO), tiene un primer uso como combustible para calderas y en general para motores de combustión interna estacionarios y al igual que ocurre con el resto de combustibles, es preciso disponer de la correspondiente norma en base a la cual certificar la adecuación al uso de este biocombustible a la aplicación.

La elaboración de esta norma, corre a cargo del WG41 dentro del Comité Técnico CEN/TC019 y se espera la publicación de la norma EN16900 en este año 2017. En esta norma se especificarán los requerimientos y métodos de ensayo para uso en calderas industriales (>1 MW de capacidad térmica), no para uso doméstico. Entre las propiedades requeridas para el uso, se especificarán valores como poder calorífico, contenido en agua, pH, densidad, punto de congelación y contenido en nitrógeno y en cuanto a requerimientos respecto de emisiones y quemadores, se definirán dos grados que requerirán diferente grado de tratamiento de gases de combustión. Estos grados, se definirán en función de propiedades tales como viscosidad cinemática, contenido en azufre, sólidos, cenizas y metales como Na, K, Ca y Mg.

Nuevo proyecto Residue2Heat (H2020): con participación de 9 socios de 5 países, dentro de la categoría RIA y con el objetivo de desarrollar el concepto para utilización en calefacción residencial del bio oil de pirólisis. Los retos del proyecto incluyen la revalorización y reciclado de subproductos, nuevos conceptos de quemadores, estandarización del combustible, …

Base de datos de plantas demo de pirólisis elaborada por IEA Bioenergy Task 34: (http://demoplants21.bioenergy2020.eu/projects/displaymap/twhWVt)  en la que se recogen referencias de más de 30 instalaciones con ubicación geográfica, tecnología en desarrollo, materias primas, productos , inversión, etc.

PYRENA: Nuevo esquema de proceso desarrollado por ECN que combina la pirólisis catalítica con gasificación y combustión optimizando el balance de calor y con producción de bio oil de mejor calidad tanto para su integración en refinerías como para su utilización en producción de químicos de alto valor añadido como azúcares, fenoles, etc. (https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=ECN-L–15-086)

Nueva instalación piloto para upgrading de productos de pirólisis: en colaboración con GRACE y ZETON, se ha construido un nuevo sistema experimental en el que se acopla la pirólisis de biomasa con el reactor” Davison Circulating Riser Reactor (DCR)” y ensayo en este último de diferentes catalizadores desarrollados por Johnson Matthey, NREL y WR Grace. Una vez completados los ensayos, se pasará a planta de NREL con capacidad para procesar 500 kg biomasa/día. La ventaja esperada con esta nueva tecnología es la integración de la pirolisis con procesos existentes en refinería y la consecuente reducción de costes. Se estima que la aplicación a las 110 unidades de FCC existentes en USA permitiría la producción de 8 billones de galones/año de biocombustibles.

Etiquetas:

Investigadores de la Unidad de Procesos Biotecnológicos del Instituto IMDEA Energía participan en la XVIII Reunión de la Red Temática Lignocel

[Autora: Elia Tomás-Instituto IMDEA Energía]

 

Investigadores de la Unidad de Procesos Biotecnológicos del Instituto IMDEA Energía han participado en la XVIII Reunión de la Red Temática Lignocel que ha tenido lugar en Jaén del 6 al 7 de octubre de 2016. En esta edición, la reunión ha estado organizada por el Grupo de Investigación “Ingeniería Química y Ambiental” del Departamento de Ingeniería Química, Ambiental y de los Materiales de la Universidad de Jaén. 

La Red Temática “Retos enzimáticos, químicos y de ingeniería para la utilización de recursos agroforestales no alimentarios (lignocelulosa) en una bioeconomía más sostenible y menos contaminante (Red Lignocel)” está financiada por el INIA dentro del Programa Estatal de I+D+i orientada a los Retos de la Sociedad (Acción Complementaria AC2015-00008-00-00).

Un año más, la reunión de la Red Lignocel ha permitido a investigadores de diferentes centros y universidades nacionales compartir sus avances científicos en el ámbito del aprovechamiento de los materiales lignocelulósicos. Durante dos días, científicos e investigadores de renombre  han discutido temas tan interesantes y punteros como la utilización de nuevos hongos y enzimas o la síntesis de nanocelulosa, biocombustibes y nuevos productos de alto valor añadido a partir de los materiales lignocelulósicos. Los avances en las nuevas tecnologías para el pretratamiento de la biomasa lignocelulósica también han sido ampliamente comentados durante la reunión.

En ese contexto, los investigadores del Instituto IMDEA Energía presentaron su trabajo “Efecto del estrés mecánico sobre Kluyveromyces marxianus y Saccharomyces cerevisiae en procesos de producción de bioetanol”.  Este trabajo de investigación permite estudiar cómo afecta el estrés mecánico a las levaduras productoras de etanol. Este estrés mecánico viene provocado por la presencia de altas cargas de sustrato en el medio de fermentación. Las altas cargas de material lignocelulósico son necesarias para que la producción de bioetanol sea económicamente competitiva ya que a mayor concentración de azúcares en el medio de fermentación, mayores serán las concentraciones de etanol potencialmente alcanzables y, por tanto, menores los costes de la destilación. Los resultados de este trabajo ponen de manifiesto el efecto negativo que ejerce la presencia de sustrato sólido insoluble sobre la producción de etanol y permitirán diseñar nuevas estrategias para mejorar la producción de biocombustibles y otros bioproductos a partir de lignocelulosa.

Etiquetas:

BioForEver, nuevo proyecto de demostración para la obtención de bioproductos a partir de biomasa lignocelulósica

BioForEver, acrónimo del proyecto BIO-based Products from FORestry via Economically Viable European Routes, es uno de los últimos en contar con el respaldo económico del consorcio Bio Based Industries Joint Undertaking (BBI JU), creado a partir del programa Horizonte 2020 de impulso a la investigación y la innovación de la Unión Europea. Quince empresas buscan desarrollar un modelo de biorrefinería a partir de biomasa leñosa para la posterior fabricación de, entre otros, butanol, etanol y plásticos.

[Autor: Jose Miguel Oliva -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT]

El consorcio está liderado por DSM, multinacional holandesa de base científica que participa junto con Poet en una de las primeras plantas comerciales de etanol lignocelulósico.

En un comunicado conjunto de las quince empresas que forman el consorcio se expone el principal objetivo de BioForEver: “demostrar la viabilidad de varias cadenas nuevas de valor para transformar materias primas lignocelulósicas en productos químicos a escala industrial, como butanol, etanol y ácido 2-5-furandicarboxilico (FDCA)”. Este último compuesto serviría para fabricar plásticos equivalentes a los actuales PET (polietileno tereftalato). Sus promotores advierten que este proyecto de demostración tendrá muy en cuenta la viabilidad comercial del uso final de estos productos.

Según se afirma en el comunicado “Una de las características que diferencia este proyecto de biorrefinería de otros es que analiza el proceso de transformación desde el comienzo hasta el final de diferentes cadenas de valor, de manera integral”. Igualmente se afirma que “Las biorrefinerías deben ser un componente, entre otros, de la bioeconomía, no un elemento aislado en el que no se sabe de partida dónde van a acabar los productos elaborados”.

El consorcio muestra su optimismo sobre la posibilidad de alcanzar nuevos procesos químicos que sean plenamente competitivos frente a otros derivados del petróleo (energía) y los azúcares (alimentación).

BioForEver acaba de dar sus primeros pasos y tendrá una duración de tres años. El presupuesto total es de 16,2 millones de euros, de los cuales el consorcio europeo público/privado BBI creado dentro del programa Horizonte 2020 contribuye con diez millones. La intención es que este tipo de biorrefinerías se asienten en importantes centros logísticos europeos como el puerto de Rótterdam.

El proyecto está abierto no solo a biomasa leñosa, sino a otras derivadas de residuos agrícolas y cultivos energéticos. Es el caso del bagazo procedente de la variedad de caña de azúcar (EUnergyCane) con la que trabaja Alkol Biotech.

Fuentes: http://www.energias-renovables.com. http://www.dsm.com

Etiquetas:

Transformación directa de lignocelulosa en alcanos líquidos

[Autor: J.L.G. Fierro, Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049  Madrid]

La conversión de biomasa lignocelulósica renovable en combustibles líquidos resulta particularmente atractiva aunque representa un verdadero reto debido a su complejidad química y extrema estabilidad química. En un estudio muy reciente titulado “Direct hydrodeoxygenation of raw woody biomass into liquid alkanes”, Nature Communications 7 (2016) doi: 10.1038/ncomms11162, se ha puesto de manifiesto que puede realizarse la hidrodesoxigenación de biomasa en alcanos líquidos con un rendimiento másico hasta 28.1% utilizando un catalizador multifuncional Pt/NbOPO4 en suspensión en ciclohexano. Este catalizador permite la conversión simultánea de fracciones de celulosa, hemicelulosa y lignina en hexano, pentano y alquilciclohexanos, respectivamente, sin ningún pretratamiento previo de la biomasa de partida.

Se estima que el consumo de los combustibles de transporte va a aumentar notablemente a lo largo de las próximas décadas, con el consiguiente deterioro ambiental asociado.  Ante tal situación, se necesitan alternativas de producción que vengan a cubrir este incremento de demanda, difícil de satisfacer mediante el crudo convencional.  A lo largo de los últimos años se han explorado con éxito varios procesos de producción basados en biomasa renovable. Los componentes principales de la biomasa son: (i)  lignocelulosa, un polímero lineal de D-glucopiranosa conectada por enlaces β-1,4-glycosidicos, es el componente principal de la biomasa (40-50%), (ii), hemicelulosa , es un heteropolímero de varios monómeros de azúcares (16-33%); y (iii), lignina, es un polímero complejo con monómeros de alcoholes cumaril, coniferil y sinapil fuertemente entrecruzados en la estructura (15-30%).  Como consecuencia de la complejidad estructural de la biomasa lignocelulósica y su resistencia química a la transformación, la eficiencia energética y el coste efectivo de producción de combustible líquidos constituyen uno de los retos más grandes de la tecnología.

Hasta la fecha se han seguido dos estrategias para abordar este proceso: (i) la separación de la lignocelulosa en azúcares aislados y lignina seguido de un procesado hidrolítico, bien químico o biológico, y (ii) tratamiento termoquímico de la lignocelulosa para producir intermedios tales como bio-aceites  (pirolisis) o gas de síntesis (gasificación), acoplados a etapas de purificación catalítica. Los procesos termoquímicos presentan la ventaja  de conversión completa pero resultan usualmente no selectivos, por otra parte, los bio-aceites o el gas de síntesis tienen que purificarse antes del proceso de utilización final. Si bien la tecnología basada en la hidrólisis ofrece producción selectiva  de combustibles líquidos, requiere varios procesos acoplados en serie con el consiguiente aumento del consumo energético. Además, la lignina originada en la hidrólisis de la lignocelulosa se quema como un combustible de escaso valor.

Aún con las dificultades mencionadas, se han puesto en marcha estrategias alternativas selectivas y eficientes para convertir el sustrato lignocelulósico en combustibles líquidos. La conversión directa de lignocelulosa en alcoholes y fenoles se ha realizado recientemente. Sin embargo, la producción directa de hidrocarburos (eliminación total de oxígeno) se consigue básicamente en la actualidad a partir de componentes separados de la lignina o la celulosa. Por ejemplo, se ha reportado un proceso en dos etapas  (pretratamiento químico e hidrogenolisis/hidrogenación) de conversión de lignina en alcanos y metanol. A nivel industrial, las empresas Shell/GTI  y Virent Energy System han establecido las tecnologías de transformación de azúcares en combustibles líquidos. La tecnología Shell se basa en un proceso termoquímico en el que el precursor reacciona a temperatura relativamente elevada (350–540 °C). En cambio, el proceso Virent convierte los compuestos oxigenados solubles en agua en hidrocarburos C4+, alcoholes y cetonas en fase acuosa o en fase de vapor. Esto se consigue mediante reformado de compuestos oxigenados solubles en agua, seguido de condensación y desoxigenación. Más recientemente se ha utilizado un sistema de tres catalizadores que convierten el material celulósico en alcanos líquidos.

Muy recientemente, un equipo multidisciplinar liderado por el Dr. Q. Xia del Research Institute of Industrial Catalysis, Shanghai (China), con la colaboración del STFC Rutherford Appleton Laboratory, Oxfordshire (UK) y la School of Chemistry, University of Nottingham, Nottingham (UK) realizó el estudio “Direct hydrodeoxygenation of raw woody biomass into liquid alkanes”, Nature Communications 7 (2016) doi: 10.1038/ncomms11162. En este trabajo se utilizó un catalizador  Pt/NbOPO4 multifuncional que convierte directamente la biomasa lignocelulósica en alcanos líquidos con rendimiento elevado. El proceso que se realiza en una sola fase (ciclohexano),  convierte fracciones de celulosa, hemicelulosa y lignina en hexano, pentano y alquilciclohexanos, respectivamente (Figura 1), lo que representa la conversión directa de lignocelulosa en alcanos líquidos bajo condiciones suaves de reacción y un solo catalizador. Además, este proceso no requiere ningún pretratamiento químico de la biomasa de partida, lo que conlleva un ahorro energético importante comparado con las tecnologías termoquímicas e hidrolíticas existentes.

 

 

 Figura 1. La biomasa puede convertirse directamente en alcanos líquidos sobre un catalizador de Pt/MbOPO4 en suspensión en ciclohexano. Las fracciones de celulosa, hemicelulosa y lignina producen respectivamente hexanos, pentanos y alquilciclohexanos.

Etiquetas:

Avanzando hacia un sistema basado en la bioeconomía: 2016 BILLION-TON REPORT

Autor: Marta Paniagua-URJC

En los próximos 25 años, Estados Unidos podría producir suficiente biomasa como para abastecer un sistema basado en la bioeconomía, incluyendo recursos de biomasa renovable acuática y terrestre que podrían ser usados tanto para la producción de energía como para la síntesis de bioproductos con beneficios económicos, medio-ambientales, sociales y de seguridad nacional.

El informe 2016 Billion-Ton Report, confirma que Estados Unidos tiene el potencial para producir de forma sostenible al menos 1 billón de toneladas secas de biomasa no alimenticia anualmente hasta el 2040. Estos recursos renovables incluyen biomasa agrícola, biomasa forestal y biomasa obtenida a partir de algas, así como residuos. Aquí se engloba la biomasa potencial actual y futura, desde los residuos de explotaciones forestales y cultivos disponibles actualmente hasta la biomasa procedente de algas disponibles en un futuro y los cultivos energéticos, todos ellos aptos para la producción de biocombustibles, bioenergía y bioproductos.

 

El informe muestra que bajo un escenario base, Estados Unidos podría incrementar el uso de recursos de biomasa seca desde los 400 millones de toneladas actuales hasta 1.57 billones de toneladas bajo un escenario de alto rendimiento.

El incremento de la producción y utilización de biocombustibles, bioenergía y bioproductos podría disminuir la emisión de gases de efecto invernadero de manera sustancial en el sector servicios y transporte y reducir la dependencia de EEUU de las importaciones de petróleo.

Algo novedoso del informe son las evaluaciones de los suministros de biomasa potenciales a partir de algas, a partir de cultivos energéticos y de residuos sólidos urbanos. Es la primera vez que el informe evalúa cómo el coste del pre-procesado y el transporte de la biomasa a la biorrefinería puede afectar a la disponibilidad de la materia prima.

Este análisis ha sido llevado a cabo por el laboratorio Oak Ridge National Laboratory (ORNL) con la contribución de 65 expertos de distintos departamentos y universidades.

Referencia:

http://www.energy.gov/eere/bioenergy/2016-billion-ton-report

Etiquetas: