Posts etiquetados con ‘aprendizaje automático’

Enfermedades neurodegenerativas identificadas mediante inteligencia artificial (actualización)

Un grupo de investigadores de la Escuela de Medicina de Icahn del Monte Sinaí y publicado en la revista médica Laboratory Investigation han desarrollado una plataforma de inteligencia artificial para detectar una variedad de enfermedades neurodegenerativas en muestras de tejido cerebral humano, incluida la enfermedad de Alzheimer y la encefalopatía traumática crónica. Su descubrimiento ayudará a los científicos a desarrollar biomarcadores y terapias dirigidas, lo que dará como resultado un diagnóstico más preciso de enfermedades cerebrales complejas que mejoren los resultados de los tratamientos a los pacientes diagnosticados.

La acumulación de proteínas tau anormales en el cerebro en las marañas neurofibrilares es una característica de la enfermedad de Alzheimer, pero también se acumula en otras enfermedades neurodegenerativas, como la encefalopatía traumática crónica y otras afecciones relacionadas con la edadEl diagnóstico preciso de las enfermedades neurodegenerativas es todo un reto y requiere un especialista altamente capacitado.

Los investigadores del Centro de Patología Computacional y de Sistemas en Mount Sinai desarrollaron y utilizaron esta plataforma para aplicar enfoques de aprendizaje automático eficaces en portaobjetos microscópicos digitalizados preparados con muestras de tejido de pacientes con un espectro de enfermedades neurodegenerativas. Aplicando el aprendizaje profundo (deep learning), estas imágenes se utilizaron para crear una red neuronal convolucional capaz de identificar enredos neurofibrilares con un alto grado de precisión directamente de las imágenes digitalizadas.

La utilización de la inteligencia artificial tiene un gran potencial para mejorar nuestra capacidad de detectar y cuantificar enfermedades neurodegenerativas, lo que representa un gran avance sobre los enfoques existentes que requieren mucha mano de obra y son poco reproducibles. En última instancia, este proyecto tiene el potencial de poder conseguir un diagnóstico más eficiente y preciso de las enfermedades neurodegenerativas.

Este es el primer marco disponible para evaluar algoritmos de aprendizaje profundo utilizando datos de imágenes a gran escala en neuropatología. La plataforma permite la gestión de datos, la exploración visual, la descripción de objetos, la revisión de múltiples usuarios y la evaluación de los resultados del algoritmo de aprendizaje profundo.

Los investigadores han usado técnicas avanzadas de computación y matemáticas junto con tecnología de microscopio de vanguardia, visión computacional e inteligencia artificial para clasificar con mayor precisión una amplia gama de enfermedades.

El departamento de patología académica del Mount Sinai es de los más grandes de USA y procesa más de 80 millones de pruebas al año, lo que da lugar a una oferta para los investigadores para el acceso a un amplio conjunto de datos que pueden utilizarse para mejorar las pruebas y los diagnósticos.

Actualización (05/06/2019)

Otro grupo de investigadores del Departamento de Patología y Medicina del Laboratorio de la Universidad Davis en California, han diseñado una “red neuronal convolucional” (CNN), un programa de computadora diseñado para reconocer patrones basados en miles de ejemplos etiquetados por humanos. Para ello, el equipo de investigación ha ideado un método para etiquetar rápidamente decenas de miles de imágenes de una colección de medio millón de imágenes de primer plano de tejido de 43 muestras de cerebro sano y enfermo y donde demostraron que su algoritmo podría procesar una diapositiva completa de todo el cerebro con 98.7% de precisión, con una velocidad limitada solo por la cantidad de procesadores de computadora que utilizaron. Estas herramientas de aprendizaje automático no es mejor para identificar las placas que los propios neuropatólogos (que son los encargados de etiquetar los casos para posteriormente entrenar el algoritmo), pero es incansable y escalable. Se podría decir que estas nuevas técnicas son un copiloto, un multiplicador de fuerza que extiende el alcance de lo que podemos lograr y nos permite hacer preguntas que nunca hubiéramos conseguido manualmente. Por ejemplo, podemos buscar placas raras en lugares inesperados que podrían darnos pistas importantes sobre el curso de la enfermedad, etc.

Referencias:

  • Maxim Signaevsky, Marcel Prastawa, Kurt Farrell, Nabil Tabish, Elena Baldwin, Natalia Han, Megan A. Iida, John Koll, Clare Bryce, Dushyant Purohit, Vahram Haroutunian, Ann C. McKee, Thor D. Stein, Charles L. White, Jamie Walker, Timothy E. Richardson, Russell Hanson, Michael J. Donovan, Carlos Cordon-Cardo, Jack Zeineh, Gerardo Fernandez, John F. Crary. Artificial intelligence in neuropathology: deep learning-based assessment of tauopathyLaboratory Investigation, 2019; DOI: 10.1038/s41374-019-0202-4
  • Ziqi Tang, Kangway V. Chuang, Charles DeCarli, Lee-Way Jin, Laurel Beckett, Michael J. Keiser, Brittany N. Dugger. Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipelineNature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-10212-1
Etiquetas: , , , , , ,

La edad es algo más que un número. El aprendizaje automático podría predecir el envejecimiento

Los profesionales médicos y la ciencia han observado durante mucho tiempo que la edad biológica y la edad cronológica no siempre coinciden. Un niño de 5 años puede presentar muchos signos de vejez y padecer numerosas enfermedades relacionadas con la edad, mientras que un una persona mayor de 80 años puede ser sano y robusto. Si bien los factores ambientales como la dieta, la actividad física y otros factores juegan un papel muy importante, hay muchos otros factores que contribuyen también a diferenciar cómo algunas personas envejecen mejor que otras. Esos factores siguen siendo aún poco conocidos…

Hace pocos días un estudio publicado en la revista Genome Biology , un equipo de investigadores del Instituto Salk de Estudios Biológicos de California, ha desarrollado un proyecto de investigación mediante el análisis de células de la piel en muestras humanas tomados de 133 individuos sanos con edades comprendidas entre 1 y 94 años, con el objetivo de encontrar ”firmas moleculares” que puedan predecir la edad biológica. Los investigadores se centraron en un tipo de célula de la piel llamada fibroblastos dérmicos, que generan tejido conectivo y ayudan a la piel a sanar después de una lesión. Eligieron este tipo de células por dos razones: primero, las células son fáciles de obtener con una biopsia de piel simple y no invasiva; en segundo lugar, estudios anteriores indicaron que es probable que los fibroblastos contengan firmas de envejecimiento. Esto se debe a que, a diferencia de la mayoría de los tipos de células que se regeneran por completo cada pocas semanas o meses, un subconjunto de estas células permanecen durante toda nuestra vida.

Para obtener una muestra representativa, el equipo estudió un promedio de 13 personas por cada década de edad. El laboratorio cultivó las células para multiplicarlas, luego usó un método llamado secuenciación del ARN (RNA-Seq) para buscar biomarcadores en las células que cambian a medida que las personas envejecen. La peculiaridad de la investigación ha sido la utilización de técnicas de aprendizaje automático e inteligencia artificial mediante el entrenamiento de algoritmos personalizados para clasificar los datos del RNA-Seq. El equipo encontró ciertos biomarcadores que indicaban el envejecimiento y podían predecir la edad de una persona con un error de menos de ocho años de promedio. Para la validación del algoritmo, el equipo utilizó fibroblastos de 10 pacientes con progeria, una enfermedad genética caracterizada por el envejecimiento prematuro. Basado en el análisis de las firmas moleculares de estos pacientes, que tenían entre dos y ocho años, el modelo predijo que sería aproximadamente una década mayor que su edad cronológica.

El objetivo de perfeccionar este algoritmo es que pueda predecir un envejecimiento saludable y un envejecimiento no saludable, y tratar de encontrar las diferencias. El estudio trata de proporcionar una base para abordar las cuestiones no resueltas en el envejecimiento humano, como es la cuantificación de la tasa de envejecimiento en momentos de estrés.

El análisis del equipo de Salk fue diferente de los enfoques anteriores tomados por otros laboratorios para estudiar el envejecimiento biológico. La mayoría de los estudios anteriores se centraron en los cambios en solo unos pocos sitios de metilación del ADN, en lugar de observar los cambios de expresión en todo el genoma. El conjunto de datos también fue mucho más grande que cualquier investigación de este tipo que se haya hecho antes, porque incluía a muchas personas que representan un rango de décadas. Los investigadores han hecho públicos los datos para que otros investigadores puedan usarlos.

Desarrollar una mejor comprensión de los procesos biológicos del envejecimiento podría eventualmente ayudar a abordar las condiciones de salud que son más comunes en la vejez, como las enfermedades cardíacas y la demencia. Además si los hallazgos son validados, los médicos podrían usar este tipo de análisis para determinar cuándo comenzar a evaluar a sus pacientes para detectar afecciones relacionadas con la edad y aconsejarles de forma preventiva sobre opciones de estilo de vida saludables más personalizadas.

El siguiente paso de la investigación será buscar estas firmas moleculares en otros tipos de células para confirmar estas hipótesis.

Referencia: Jason G. Fleischer, Roberta Schulte, Hsiao H. Tsai, Swati Tyagi, Arkaitz Ibarra, Maxim N. Shokhirev, Ling Huang, Martin W. Hetzer, Saket Navlakha. Predicting age from the transcriptome of human dermal fibroblastsGenome Biology, 2018; 19 (1) DOI: 10.1186/s13059-018-1599-6

Etiquetas: , , , , ,