Archivo de abril, 2013

Un nuevo material para producir hidrógeno, agua potable e incluso suministrar energía

 Por Á. Ridruejo (Universidad Politécnica de Madrid)

Según una noticia recogida recientemente en la revista Science Daily, una versión nanoestructurada del dióxido de titanio (TiO2) es capaz de desalar agua si se utiliza en membranas semipermeables y de contribuir a recuperar energía a partir de la salmuera desechada en el proceso. También puede duplicar la duración de las baterías de ion litio e incluso usarse como agente bactericida en nuevos vendajes.

El dióxido de titanio es un material abundante, conocido y profusamente utilizado en la industria. Sin ir más lejos, es el pigmento más común que se añade a cualquier esmalte o pintura cuando queremos obtener el color blanco, y está presente en casi todas las cremas de protección solar. Presenta interesantes propiedades químicas, entre ellas, que acelera ciertas reacciones químicas y que se enlaza fácilmente con moléculas de agua. La novedad, desarrollada por el equipo del profesor Darren Sun en la Universidad Tecnológica de Nanyang (Singapur), consiste en insertar los cristales de dióxido de titanio en nanofibras. A su vez, estas  nanofibras son las que se procesan para obtener membranas flexibles. Los responsables del equipo de investigación esperan además que las aplicaciones de las membranas de nanofibra con TiO2 sean una gran ayuda para afrontar dos de los principales retos derivados de la superpoblación: la obtención de energía barata y el suministro de agua potable.

Imagen de microscopio electrónico de un grupo de nanofibras de dióxido de titanio obtenidas por el Laboratorio Nacional de Argonne (EE.UU.). Cada fibra es 10.000 veces más fina que un cabello humano.

 

El camino para llegar a esta conclusión no ha sido directo. En un principio, el equipo del profesor Sun comenzó a utilizar dióxido de titanio en membranas para resolver el problema del bioensuciamiento,  en el que el crecimiento de colonias bacterianas ocluye los poros de la membrana, lo que provoca la obstrucción del flujo de agua a su través. Durante esta investigación, se descubrió que el dióxido de titanio actuaba como fotocatalizador. En presencia de luz solar, una fracción del agua se descomponía en hidrógeno y oxígeno. Esta reacción también puede darse con platino como catalizador, pero el platino tiene un precio muy superior, y el rendimiento del TiO2  (1,53 ml de H2 por hora y litro de agua de desecho) parece ser tres veces superior. Según el profesor Sun, producir hidrógeno como subproducto de la desalinización del agua permite reducir su coste energético a prácticamente cero. Cualquier excedente podría además ser utilizado en células de combustible o quemado en centrales de ciclo combinado para obtener electricidad.

La naturaleza hidrofílica del dióxido de titanio tiene otra importante ventaja al incorporarse en membranas: el agua penetra en ellas con facilidad, a la vez que otros contaminantes, principalmente los de la sal, se ven repelidos. En estos momentos se trabaja en el desarrollo de una membrana de elevado flujo por ósmosis directa basada en este nuevo material.

Las propiedades antimicrobianas del TiO2 también permiten anticipar su uso como vendaje antibacteriano para evitar infecciones en heridas abiertas.

El equipo de la Universidad Tecnológica de Nanyang también ha desarrollado un dióxido de titanio policristalino de color negro que permite fabricar celdas solares flexibles para la generación de electricidad. El dióxido negro tiene otra aplicación interesante en baterías de litio, puesto que, cuando nanopartículas de este material modificadas con carbono se usan como ánodo, la capacidad de la batería se duplica, lo que proporciona a las baterías una duración mucho mayor antes de descargarse completamente. Este resultado mereció la portada de uno de los números de la revista Journal of Materials Chemistry del año pasado.

El profesor Sun y su equipo no piensan desaprovechar la posible rentabilidad de un material tan prometedor. A la vez que profundizan en el desarrollo del material, están inmersos en la creación de una nueva empresa que comercialice el producto.

 

Referencia de la noticia:

Nanyang Technological University. “Multi-purpose wonder can generate hydrogen, produce clean water and even provide energy.” ScienceDaily, 23 Mar. 2013. Web. 20 Apr. 2013

Otras referencias científicas:

  1. Lei Liu, Zhaoyang Liu, Hongwei Bai, Darren Delai Sun. Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Research, 2012; 46 (4): 1101
  2. Ia Hong Pan, Xiwang Zhang, Alan J. Du, Hongwei Bai, Jiawei Ng, Darren Sun. A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration. Physical Chemistry Chemical Physics, 2012; 14 (20): 7481


Etiquetas:

Desarrollo de dispositivos diminutos que permiten estudiar el cerebro

El mundo de la investigación está inmerso en una época de máxima atención al estudio del cerebro, cuyo funcionamiento es una de nuestras grandes incógnitas. La ciencia e ingeniería de materiales puede aportar nuevos materiales que ayudan a explorar la actividad neuronal.

El Profesor de Ciencia e Ingeniería de Materiales en la Universidad de Illinois John Rogers lidera un grupo dedicado al desarrollo de materiales blandos para aplicaciones electrónicas y ópticas. Recientemente han desarrollado un dispositivo ultrafino y flexible para ser utilizado en estudios de cerebro, pues puede implantarse incluso en regiones profundas del tejido. Dicho dispositivo se describe en un artículo publicado en el último número de la revista Science, donde pueden consultarse los detalles.

El dispositivo incluye un microelectrodo, LEDs para producir una estimulación óptica, sensor óptico y sensor térmico. Tiene la forma de una cinta con un ancho de centenas de micras y espesor de decenas de micras. Siendo de materiales blandos y biocompatibles, puede implantarse en cerebros por ejemplo de ratones para estudios de laboratorio.

Los investigadores han demostrado la aplicación de su dispositivo en optogenética, un nuevo área en neurociencia que utiliza la luz para estimular los caminos neuronales deseados en el cerebro. Dicho procedimiento incluye la programación genética de neuronas específicas para responder a los estímulos luminosos. La optogenética permite a los investigadores investigar aisladamente funciones cerebrales precisas, algo que no sería posible con estimulación eléctrica, ya que ésta afecta a las neuronas de una región amplia, ni con biomoléculas, que afectan a todo el cerebro.

Etiquetas:

Gana tu propio Bosón de Higgs

No hemos podido resistirnos a poner un enlace a este post del CERN (“Conseil Européen pour la Recherche Nucléaire”) en un día como hoy, 1 de Abril.

Win your own higgs boson

El Director de Investigación de dicho centro ha decidido sortear algunos Bosones de Higgs con motivo del gran entusiasmo creado por el descubrimiento de dicha partícula fundamental el 4 de julio de 2012.

¡Buena suerte a todos!    :o)

Etiquetas: