‘Materiales blandos’

Las células estrenan “modelito”

Por Blanca González Bermúdez (Universidad Politécnica de Madrid)

Cuando se habla de la célula, de su estructura, funciones, interacciones o posibles patologías, se mantiene muchas veces un enfoque bioquímico: el gen X codifica una proteína que regula el gen Y, el cual, a su vez, codifica la proteína Z, y así sucesivamente. Es natural que esto ocurra, ya que la biología celular se ha basado en principios bioquímicos -moleculares y genéticos-, para explicar el funcionamiento de las células. Pero, como siempre, la naturaleza hace las cosas un poco más complicadas.

El caso es que desde los años 70 sabemos que una buena parte de los procesos celulares están relacionados también con el comportamiento mecánico de las células. Por ejemplo, los glóbulos blancos se activan y se vuelven más deformables cuando detectan una infección. Ciertas enfermedades, como la malaria, provocan un aumento en la rigidez de los glóbulos rojos, y se ha observado que las células cancerosas se vuelven más flexibles, y por ello migran con mayor facilidad, que las células sanas. Aún más, las células son capaces de detectar la rigidez y las fuerzas mecánicas de su entorno. Una misma célula madre, por ejemplo, se puede diferenciar en una neurona o en un miocito cambiando simplemente la rigidez del sustrato.

En definitiva, se ha podido constatar que las propiedades mecánicas de las células pueden emplearse como biomarcadores del estado celular. Partiendo de esta idea, se han desarrollado en las últimas décadas varias técnicas experimentales para estudiar el comportamiento mecánico de la célula y las fuerzas que ejerce sobre su entorno: la microscopía de fuerza atómica, la aspiración con micropipeta, la citometría óptica y magnética, o la microscopía de fuerzas de tracción, entre otras.

En el laboratorio de Biomateriales (CTB-UPM), hemos puesto a punto la técnica de aspiración con micropipeta, que nos ha servido para comparar las propiedades mecánicas de células en distintas condiciones. Con este procedimiento podemos aspirar las células en suspensión mediante un microcapilar de vidrio, aplicando una diferencia de presión entre el interior del microcapilar y la muestra de células. Las imágenes del ensayo de aspiración se procesan automáticamente en un ordenador y obtenemos así la longitud aspirada de la célula en el interior del microcapilar en cada instante.

Pero nos quedaba una barrera pendiente: ¿qué modelo mecánico emplear en nuestros experimentos? En una célula hay diferentes orgánulos contenidos en el citoplasma, conectados entre sí por un entramado muy complejo, que apenas ahora estamos cartografiando con detalle. Esto ha supuesto que se hayan generado múltiples modelos mecánicos de la célula, si bien el desarrollo de un modelo que describa de manera integral el complejo comportamiento de las células sigue suponiendo un desafío en la actualidad. Para la técnica de aspiración con micropipeta, hay modelos que asumen que la célula se comporta como un sólido elástico lineal incompresible en pequeñas deformaciones, y que permiten calcular el módulo elástico de la célula en función de la presión y longitud aspirada en la micropipeta.  También existen modelos para grandes deformaciones, que analizan la viscosidad aparente de las células asumiendo un comportamiento de fluido viscoso Newtoniano. Sin embargo, nos resulta curioso que los modelos más empleados para la aspiración de células con micropipeta no tengan en cuenta el tamaño finito de las células ni el contacto con la micropipeta. Además, asumen que las células son imcompresibles, es decir, que tienen un coeficiente de Poisson de 0,5.

Figura 1. Simulación numérica de la aspiración de células con micropipeta.

Con la intención de proponer una mejora en los modelos existentes para la aspiración de células con micropipeta, hemos desarrollado una metodología que permite calcular el módulo elástico y el coeficiente de Poisson de la célula aspirada. En este modelo numérico axisimétrico, de elementos finitos, consideramos el contacto de la célula con la micropipeta, mediante un radio de acuerdo, y hemos hallado una relación no lineal de la longitud aspirada de la célula con respecto a la presión de aspiración (figura1). También hemos comprobado que, empleando este modelo en ensayos de linfocitos, los valores del módulo elástico y coeficiente de Poisson que obtenemos son razonables para este tipo de células.

Los siguientes pasos de nuestra hoja de ruta van dirigidos a lograr automatizar aún más la técnica de aspiración de células con micropipeta, con el fin de aumentar el número de células analizadas por hora, de forma que un futuro pudiera aplicarse este modelo de trabajo al estudio de la deformabilidad de linfocitos T como biomarcador de la edad y funcionalidad.  Pero eso es otro cantar.

Mientras llega ese momento, podemos al menos afirmar que las células ya pueden lucir “modelito” nuevo esta temporada.

Referencias:

  •  Rosowski K. Introduction to Cell Mechanics and Mechanobiology. The Yale Journal of Biology and Medicine. 2013;86(3):436-437.
  •  Worthen, G. S., Schwab, B. I. I. I., Elson, E. L., & Downey, G. P. (1989). Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science, 245(4914), 183-186.
  •  Suresh, S., Spatz, J., Mills, J. P., Micoulet, A., Dao, M., Lim, C. T., … & Seufferlein, T. (2015). Reprint of: connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta biomaterialia, 23, S3-S15.
  •  Suresh, S. (2007). Biomechanics and biophysics of cancer cells. Acta Materialia, 55(12), 3989-4014.
  •  Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677-689.
  •  Di Carlo, D. (2012). A mechanical biomarker of cell state in medicine. Journal of Laboratory Automation, 17(1), 32-42.
  •  Bao, G., & Suresh, S. (2003). Cell and molecular mechanics of biological materials. Nature materials, 2(11), 715-725.
  •  Plaza, G. R., Marí, N., Gálvez, B. G., Bernal, A., Guinea, G. V., Daza, R., … & Elices, M. (2014). Simple measurement of the apparent viscosity of a cell from only one picture: Application to cardiac stem cells. Physical Review E, 90(5), 052715.
  •  Hochmuth, R. M. (2000). Micropipette aspiration of living cells. Journal of biomechanics, 33(1), 15-22.
  •  Esteban-Manzanares, G., González-Bermúdez, B., Cruces, J., De la Fuente, M., Li, Q., Guinea, G. V., … & Plaza, G. R. (2017). Improved Measurement of Elastic Properties of Cells by Micropipette Aspiration and Its Application to Lymphocytes. Annals of biomedical engineering, 45(5), 1375-1385.
  •  Inner life of the cell: https://www.youtube.com/watch?v=FzcTgrxMzZk

 

Etiquetas:

Material para detectar alimentos en mal estado

Por Patricia Muñoz, Ingeniera de Materiales

El desarrollo de materiales funcionales flexibles, utilizando componentes orgánicos, permite obtener dispositivos electrónicos apropiados para aplicaciones en las que su deformabilidad es importante, como es el campo biomédico.

En el blog nos hacemos eco de la noticia de que un grupo de investigadores de la Universidad de Yamagata en Japón han desarrollado un pequeño dispositivo capaz de identificar la descomposición de los alimentos, lo que evitaría posibles casos de intoxicación por mal estado de los alimentos.

El dispositivo de pocos centímetros de longitud se fabrica por impresión de un material semiconductor sobre un sustrato plástico. Este sensor funciona detectando la histamina, sustancia que se forma durante el proceso de descomposición de la carne y de los alimentos en general.

Imagen del dispositivo (adaptado de la ref. 2).

Este dispositivo aún es un prototipo pero se espera que se comercialice en unos tres años, además se investiga como integrarlo en envoltorios de alimentos para que sean estos envoltorios los que detecten de manera automática el estado de los alimentos.

Referencias:

1. Página web del Prof. Tokito.

2. Noticia en Nikkei Asian Review.

 

Etiquetas:

Materiales para generación de energía eléctrica: superficies optimizadas para la transmisión de calor

Una de las etapas importantes en las centrales de producción de energía eléctrica es la condensación de vapor de agua. Un reciente estudio, pubicado en Scientific Reports, describe cómo puede mejorarse en un 100% la eficiencia de la transmisión de calor en esta etapa con una superficie heterogénea combinando diferentes materiales.

En las centrales termoeléctricas actuales se convierte calor en energía mecánica y después eléctrica mediante un ciclo termodinámico realizado por agua. Primeramente, se aumenta la presión de agua líquida en una bomba. Después, el agua se calienta, haciendo que pase a estado vapor y aumente su temperatura (a partir del calor generado mediante combustibles fósiles, mediante energía nuclear o incluso mediante energía solar). Después este vapor de agua a alta presión se emplea para hacer girar una turbina y posteriormente el vapor debe enfriarse y condensarse en un condensador. Típicamente se emplea el agua fría de un río para enfriar el condensador.

En el condensador, se consigue una buena eficiencia (lo cual supone un menor tamaño y coste del condensador) si se realiza fácilmente el intercambio de calor entre el vapor de agua que se quiere condensar y los materiales del condensador. Pues bien, en este intercambio de calor influye el proceso de formación y desprendimiento de las gotas de agua condensada en la superficie. Una buena eficiencia se consigue si la superficie favorece la nuceación de muchas gotas de agua, un mayor contacto entre cada gota y la superficie (mejor transmisión de calor) y el desprendimiento de las gotas cuando tienen un tamaño pequeño (frente al crecimiento hasta grandes tamaños) para permitir la condensación de nuevas gotas.

Imagen de previsualización de YouTube

Condenación de vapor en una tubería de cobre optimizada con pequeñas zonas hidrófilas, superficie nanoestructurada y recubrimiento de aceite, obtenida por el grupo de la Pfrof. Evelyn N. Wang.

En épocas recientes se habían hecho los mayores esfuerzos para conseguir superficies hidrófobas que favorecieran el desprendimiento de las gotas. El trabajo mencionado, liderado por la Profesora de Ingeniería Mecánica Evelyn N. Wang, ha pretendido la mejora de la superficie en los tres aspectos. De este modo, la superficie diseñada por su equipo contiene pequeñas zonas hidrófilas que favorecen la nucleación de gotas, una nanorugosidad combinada con micropilares que favorecen el deslizamiento de las gotas y una capa de aceite que favorece el mayor contacto entre las gotas y la superficie, mejorando la transmisión de calor en las gotas.

Etiquetas:

Desarrollo de dispositivos diminutos que permiten estudiar el cerebro

El mundo de la investigación está inmerso en una época de máxima atención al estudio del cerebro, cuyo funcionamiento es una de nuestras grandes incógnitas. La ciencia e ingeniería de materiales puede aportar nuevos materiales que ayudan a explorar la actividad neuronal.

El Profesor de Ciencia e Ingeniería de Materiales en la Universidad de Illinois John Rogers lidera un grupo dedicado al desarrollo de materiales blandos para aplicaciones electrónicas y ópticas. Recientemente han desarrollado un dispositivo ultrafino y flexible para ser utilizado en estudios de cerebro, pues puede implantarse incluso en regiones profundas del tejido. Dicho dispositivo se describe en un artículo publicado en el último número de la revista Science, donde pueden consultarse los detalles.

El dispositivo incluye un microelectrodo, LEDs para producir una estimulación óptica, sensor óptico y sensor térmico. Tiene la forma de una cinta con un ancho de centenas de micras y espesor de decenas de micras. Siendo de materiales blandos y biocompatibles, puede implantarse en cerebros por ejemplo de ratones para estudios de laboratorio.

Los investigadores han demostrado la aplicación de su dispositivo en optogenética, un nuevo área en neurociencia que utiliza la luz para estimular los caminos neuronales deseados en el cerebro. Dicho procedimiento incluye la programación genética de neuronas específicas para responder a los estímulos luminosos. La optogenética permite a los investigadores investigar aisladamente funciones cerebrales precisas, algo que no sería posible con estimulación eléctrica, ya que ésta afecta a las neuronas de una región amplia, ni con biomoléculas, que afectan a todo el cerebro.

Etiquetas: