web analytics

Posts etiquetados con ‘matemática discreta’

El Premio Abel y las matemáticas discretas en España

El reciente Premio Abel concedido a László Lovász y Avi Wigderson, y del que dimos cuenta en Matemáticas y sus fronteras, nos lleva a una reflexión sobre la relación entre la llamada matemática discreta y la teoría de computación.

Uno de los nombres claves en la computación es, sin ninguna duda, el matemático Alan Turing, quien diseñó uno de los constructos mentales más relevantes del siglo XX, la máquina de Turing. Esos algoritmos son la esencia del software que subyace en nuestros ordenadores y es una clara muestra de cómo lo discreto es esencial para la computación.

Como es bien conocido, los ordenadores trabajan con un sistema binario de numeración, con unos y ceros (1 abierto, 0 cerrado), y en cantidades discretas. Lovász es un experto en teoría de grafos (recuerdo una excelente conferencia suya sobre grafos muy grandes), y los grafos son esenciales en muchas cuestiones de la computación. Sus primeros resultados los desarrolló con el propio Paul Erdös.

En su trabajo posteror, desarrolló algoritmos para tratar de resolver problemas. Uno de sus resultados más notables fue el llamado algoritmo LLL de reducción de bases de celosía Lenstra-Lenstra-Lovász, un algoritmo en tiempo polinómico que debe su nombre a las iniciales de sus creadores Arjen Lenstra, Hendrik Lenstra y László Lovász. Este algoritmo se usa para la factorización de polinomios con coeficientes racionales, para encontrar aproximaciones racionales simultáneas a los números reales, y para resolver problemas de programación lineal. Se usa además en criptografía.

El grafo formado por los editores de Wikipedia (aristas) que contribuyen a las diferentes versiones lingüísticas de Wikipedia (vértices) durante un mes del verano de 2013

Por otra parte, Wigderson estudia los problemas computacionales para tratar de determinar la dificultad de los algoritmos para resolverlos, en lo que se conoce como teoría de la complejidad. El problema clave es en cuánto tiempo (o en cuántos pasos) el algoritmo resolvería el problema. La clase general de preguntas para las que algún algoritmo puede proporcionar una respuesta en tiempo polinómico se denomina “clase P”. Para algunas preguntas, no hay una forma conocida de encontrar una respuesta rápidamente, pero si se proporciona información que muestre cuál es la respuesta, es posible verificar la respuesta rápidamente. La clase de preguntas cuya respuesta puede verificarse en tiempo polinómico se denomina NP, que significa “tiempo polinómico no determinista”. Pues bien, uno de los siete problemas del milenio es precisamente probar si P es igual o no a NP.

Uno de los resultados más sorprendentes de Wigderson es que los problemas difíciles (hard) se pueden resolver si se usan algoritmos ales leatoriedad en los problemas computacionales. Muchos problemas difíciles pueden resolverse con mayor rapidez si se abordan con algoritmos que dependen de la aleatoriedad. Poco después fue capaz de probar que en realidad esos algoritmos se podían convertir en otros deterministas que eran tan eficaces como los aleatorios.

Solución de un problema de viajante de comercio: la línea negra muestra el bucle más corto posible que conecta cada punto rojo.

La citación del premio Abel dice que “Gracias al liderazgo de Lovász y Wigderson, la matemática discreta y el campo relativamente joven de la informática teórica se han establecido como áreas centrales de la matemática moderna”.

Las tres cuestiones que nos planteamos son las siguientes. Si tan importantes son las investigaciones en matemáticas discretas en relación con sus aplicaciones a la computación:

1. Cuál es el nivel de la investigación matemática española en combinatoria, teoría de grafos y en general en matemática discreta?

2. ¿Existen en España equipos interdisciplinares de matemáticos e informáticos que aborden estas cuestiones?

3. ¿Cuál es el impacto de estas investigaciones en la tecnología desarrollada en España?

En 2005 publicamos un estudio titulado La investigación matemática española de difusión internacional: estudio bibliométrico del período 1996-2001, elaborado por María Bordons, Isabel Gómez, María Teresa Fernández, Fernanda Morillo, David Martín de Diego y yo mismo, una colaboración con el entonces CINDOC, en el que examinamos la especialización de las matemáticas españolas en relación con Europa, Estados Unidos y el mundo, comparando la sproducciones relativas en los campos de la MSC. De ese estudio, concluíamos:

Resulta muy llamativa la alta actividad relativa de España en Análisis funcional (código46). Menos llamativo, pero también digno de resaltar es la actividad del país en Análisis de Fourier (código 42) y Teoría de juegos (código 91). Por el contrario, España muestra baja actividad relativa en algunos temas como Combinatoria (código 5), Teoría de números (código 11), Teoría de sistemas (código 93) y Mecánica de fluidos (código 76), temas a los que el mundo dedica cerca del 3% de la producción en cada caso, y en los que nuestro país muestra un IE<0,7.

Para comprobar si la situación había variado en estos últimos años, haciendo una consulta grosera en MathSciNet. Así, desde 2005 a 20020, se encuentran 1394 papers de autores españoles con la clasificación de “Combinatoria”, una media de 87 por año. La mayoría de la producción se centra en el ámbito de las universidades catalanas y andaluzas, con una más reducida presencia de la UC3M y la URJC de Madrid.

La producción, aunque parece haber aumentado (un 1,95% del total mundial), se mantiene por debajo de la de otras líneas de investigación en cuanto a cantidad que no en calidad, lo que indica que es una disciplina que precisa aumentar el número de investigadores.

En cuanto a las colaboraciones con la informática, me gustaría destacar las del grupo GAPCOMB (Geometric, Algebraic and Probabilistic Combinatorics), asentado en la Universidad Politécnica de Cataluña y apoyado por la Barcelona Graduate School of Mathematics. Pero es claro que necesitaríamos más grupos donde se produzca ese cruce de caminos entre ambas disciplinas

En cuanto al tercer tema, me temo que no soy capaz de identificar actividades en ese sentido (y agradecería recibir información sobre ellas si es que ya existen).

En conclusión, este Premio Abel nos llama la atención sobre la relevancia de la Combinatoria sino también sobre la necesidad de impulsarala más en España.

___________

Manuel de León (CSIC, Fundador del ICMAT, Real Academia de Ciencias, Real Academia Canaria de Ciencias, Real Academia Galega de Ciencias).

Etiquetas: , , ,
Categorias: General

El Premio Abel 2021, concedido a Laszló Lovász y Avi Wigderson

La Academia Noruega de Ciencias y Letras ha anunciado su decisión sobre el Premio Abel 2021, que ha recaído en los matemáticos László Lovász, del Instituto de Matemáticas Alfréd Rényi y de la Universidad Eötvös Loránd de Budapest, Hungría, y Avi Wigderson, del Instituto de Estudios Avanzados de Princeton (EE.UU.), “por sus contribuciones fundacionales a la informática teórica y a la matemática discreta, y por su papel destacado en la configuración de éstas como campos centrales de la matemática moderna”.

Trazaremos unas breve biografías de ambos matemáticos. László Lovász nació  en 1948 en Budapest, y es fruto de la excelente escuela matemática húngara, especialmente brillante en algunos temas como la matemática discreta. László Lovász fue un alumno superdotado, ganador de medallas de oro en tres Olimpiadas Matemáticas Internacionales (164, 1965 y 1966), en dos ocasiones con la puntuación máxima.

 

László Lovász

Lovász obtuvo su grado de Ph.D. en 1970 de la Universidad Eötvös Loránd, Budapest, donde trabajó hasta 1975. Sin abandonar Hungría, pasó a la Universidad de Szeged, hasta 1982, regresando entonces a Eötvös  y crear el Departamento de Ciencias de la Computación. Después fue profesor de la Universidad de Yale durante la década de 1990, colaborando como investigador en el Microsoft Research Center hasta 2006. Entonces volvió a Hungría para dirigir el Instituto de Matemáticas de la Academia de Ciencias.

Entre los premios que ha ganado, están el Premio Wolf de 1999, el Premio Knuth de 1999, el Premio Gödel de 2001, el Premio Bolyai en 2007 y el Premio Kyoto de 2010, todos ellos de un indudable prestigio.

Su trabajo de investigación se centra en la combinatoria y la teoría de grafos, y sus aplicaciones a la complejidad en computación, un ejemplo extraordinario de cómo una investigación básica incide en las aplicaciones de frontera. Su labor se traduce en más de 300 artículos y libros que han conseguido un impacto enorme.

Reunión del Comité Ejecutivo de IMU en Perth (Australia)

 

Tuve la oportunidad de trabajar 8 años con Laci Lovász, de 2007 a 2010 como Presidente de la Unión Matemática Internacional (IMU) y de 2011 a 2014 como exPresidente. Tras su labor en IMU, fue elegido presidente de la Academia de Ciencias de Hungría entre 2014 y 2020.

En 2007 lo invitamos a Madrid para participar en un Simposio de la Fundación Areces, Las fronteras de las Matemáticas, que coordiné con mi colega de la Real Academia de Ciencias, Manuel López Pellicer. En todos estos años, he podido apreciar no sólo su extraordinaria calidad matemática, pero también su calidad humana, su sencillez y su siempre bonhomía.

 

En cuanto al otro premiado, Avi Wigderson nació en Haifa (Israel) en 1956. Ingresó en el Technion en 1977, y se licenció en Ciencias de la Computación en 1980. Se trasladó a Princeton para realizar sus estudios de posgrado, y se doctoró en 1983. En 1986 Wigderson regresó a Israel para ocupar un puesto en la Universidad Hebrea de Jerusalén. Al año siguiente fue nombrado profesor titular en 1991. En 1999 también aceptó un puesto en el Instituto de Estudios Avanzados (IAS) de Princeton, y en 2003 renunció a su puesto en la Universidad Hebrea para residir a tiempo completo en el IAS.

Avi Widgerson

Además de la medalla Nevanlinna, concedido por la IMU en el Congreso Internacional de Matemáticos (ICM) en Zúrich en 1994, obtuvo como Lovasz los Premios Gödel (2009) y Knuth (2019).

Su investigación es muy amplia en intereses que incluyen la teoría de la complejidad, los algoritmos paralelos, la teoría de grafos, la criptografía, la computación distribuida y las redes neuronales.

Según la Academia Noruega, la teoría de la “complejidad computacional” -que se ocupa de la velocidad y la eficiencia de los algoritmos- surgió en la década de los 70 y ahora es un campo establecido tanto en las matemáticas como en la informática teórica. “Lovász y Wigderson han sido las principales fuerzas de este desarrollo en las últimas décadas. Sus trabajos se entrelazan de muchas maneras y, en particular, ambos han hecho contribuciones fundamentales para entender la aleatoriedad en la computación y para explorar los límites de la computación eficiente”, afirmó Hans Munthe-Kaas, presidente del Comité Abel.

Este es el vídeo del anuncio

Imagen de previsualización de YouTube

Un premio muy merecido por ambos científicos.

___________

Manuel de León (CSIC, Fundador del ICMAT, Real Academia de Ciencias, Real Academia Canaria de Ciencias, Real Academia Galega de Ciencias).

 

Etiquetas: , , , , ,
Categorias: General