web analytics

Posts etiquetados con ‘Teorema de Pascal’

Cinco puntos definen una cónica

Seguimos con nuestro repaso por el mundo de las cónicas y hoy hablaremos de otro de los hitos en su estudio, el Teorema de los cinco puntos, que afirma que cinco puntos de un plano son suficientes para construir una cónica. Afinando más, 3 de esos puntos no pueden ser colineales, porque entonces el resultado sería una cónica degenerada y podría no ser única.

La razón para este resultado es muy simple si consideramos la ecuación general de una cónica:

Ax2 + B xy + Cy2 + D x + Ey + F = 0

entonces, las coordenadas (xi,yi) de los cinco puntos, i = 1, …, 5, deben cumplir la ecuación anterior. Por lo tanto, obtenemos un sistema de cinco ecuaciones con seis incógintas, pero como el sistema es homogéneo, podemos considerar F = 1, y el resultado saldrá de manera inmediata.

La demostración es todavía más evidente cuando se considera la geometría proyectiva, porque en el plano proyectivo RP2  (que se obtiene de R3 identificando todos los puntos de cada recta que pasa por el origen) cada cónica está definida por exactamente cinco números.

Otra cuestión interesante, y que pone de manifiesto esa dualidad entre puntos y rectas, es que se pueden considerar construcciones de cónicas partiendo de m puntos y n rectas, con m+n = 5, donde m y n varían de 0 a 5. En el caso de las rectas, la noción de ser un punto de la cónica se traduce en ser recta tangente a la cónica.

Una de las técnicas modernas más interesantes para estudiar las propiedades de las cónicas consiste en calcular lo que se llama su espacio de moduli. Ya que la ecuación de una cónica incluye 6 coeficientes, A, B, C, D, E, F, y poder eliminar uno, por ejemplo, F, y obtener coordenadas homogéneas (A/F, B/F, C/F, D/F, E/F) (supononiendo, claro está que F no es 0), vemos que existe una correspondencia biyectiva entre cónicas en un plano y puntos del espacio proyectivo RP5 (obtenido de R6 identificando los puntos de las rectas pasando por el origen). Así que RP5 es el espacio de moduli de las cónicas planas. Esto implica que cualquier problema de contar incidencias o tangencias para las cónicas se puede traducir en un problema de intersecciones en el espacio proyectivo RP5 . De hecho, este es el principio en la llamada geometría enumerativa, que tiene en cuenta problemas enumerativos a los que tan aficionados eran los griegos, y es hoy en día una rama muy activa de la geometría algebraica.

Cónica tangente a cinco dadas

Así, podíamos pensar no solo en cuantas cónicas pasan por unos puntos y son tangentes a unas rectas dadas, sino también si son tangentes a unas cónicas prefijadas. Esto enlaza con el famoso problema planteado en 1848 por Jakob Steiner, de la Universidad de Berlín: Dadas cinco cónicas en el plano, ¿cuántas cónicas son tangentes a todas ellas? El propio Steiner dio una respuesta, 7776 = 65, pero estaba equivocado. La respuesta correcta es 3264, como probaron Ernest de Jonquières en 1859, y Chasles en 1864 (aunque el primero no publicó el resultado por respeto a la enorme reputación de Steiner). La geometría enumerativa y la teoría de intersección, dan la respuesta. En el artículo “Enumerative Algebraic Geometry of Conics”, de Andrew Bashelor, Amy Ksir y Will Traves en Amer. Math. Monthly, 115 (8): 701–728, ) se da la respuesta completa a este problema.

Jacob Steiner

Debemos recordar que el llamado Teorema de los cinco puntos tiene una historia antigua. El resultado parece haber sido conocido desde hace mucho, pero no hemos sido capaces de encontrar un autor primero tanto del enunciado como de la prueba. En el artículo “Conic  sections  through  five  points  classical,  projective,  conformal”, de Eckhard Matthias Sigurd Hitzer se comenta como en 1844,  200 años después del Teorema de Pascal, el matemático alemán Hermann    Grassmann inventósi “Teoría de la extensión”,  usó el teorema del francés para encontrar una fórmula explícita de la cónica pasando por cinco puntos.

Hermann Grassmann

A medida que se han ido desarrollando las matemáticas, la geometría analítica, la geometría proyectiva, o la moderna geometría algebraica, ha ido proporcionando no solo nuevas demostraciones, sino generalizaciones y nuevos desarrollos matemáticos. Debemos recordar que hay pocos matemáticos relevantes desde los antiguos griegos hasta el sigo XX cuyo nombre no esté asociado de una manera u otra a las cónicas.

Más recientemente, el uso de programas como Geogebra, ha permitido que este y muchos otros resultados puedan ser abordados en el aula de una manera visual, sin que esto suponga ninguna pérdida de rigor matemático. Esto nos lleva a reivindicar la mayor inclusión de contenidos geométricos en los curricula académicos, acompañados de los programas tecnológicos que ayudan a explicarlos y trabajarlos conjuntamente con los alumnos.

Agustín Carrillo de Albornoz (Catedrático de Matemáticas y Secretario General de la FESPM y de la FISEM) y  Manuel de León (CSIC, Fundador del ICMAT, Real Academia de Ciencias, Real Academia Canaria de Ciencias, Real Academia Galega de Ciencias).

Etiquetas: , , , ,
Categorias: General

El Hexagrammum Mysticum

El estudio de las cónicas, que se extiende a más de dos milenios, ofrece episodios matemáticos de una gran belleza, que en algunos casos se acerca al misticismo. Uno de los teoremas más excitantes en ese sentido es el llamado Teorema de Pascal, denominado a veces el Teorema del Hexagrama Místico.

Blaise Pascal

 

El Teorema de Pascal dice lo siguiente:

Si un hexágono arbitrario ABCDEF se encuentra inscrito en una cónica, y se prolongan los pares de lados opuestos hasta que se cruzan, los tres puntos en los que se intersecan se encontrarán ubicados sobre una línea recta, denominada la recta de Pascal de esta configuración (veáse Figura 1).

 

Figura 1

 

Esta figura ilustra el resultado en el caso de la elipse, pero el teorema vale para cualquier tipo de cónicas, incluyendo las degeneradas así como hexágonos que se puedan intersecar.

El teorema fue enunciado por Blaise Pascal cuanto contaba dieciséis años, un prodigio de precocidad, pero no se ha conservado ninguna prueba por su parte. Pascal trabajaba en un tratado sobre las cónicas, Conicorum Opus Completum que se perdió. Si se conserva lo que titula Essay pour les coniques, una especie de “poster” que envió en 1654 a la Academia de Ciencias de París.

El Teorema de Pascal es de clara naturaleza proyectiva, y de hecho, para entenderlo en toda su generalidad, debemos considerar el caso de las rectas paralelas que se juntan en el punto del infinito.

Este teorema es además una generalización del teorema de Pappus, de hecho, este último correspondería al caso de una cónica degenerada formada por dos rectas. El Teorema de Papus establece lo siguiente:

Si en un par de rectas se escogen tres puntos al azar en cada una y se unen dos a dos, las intersecciones de las rectas que los unen estarán en una línea recta.

El siguiente gráfico ilustra este resultado:

 

Una de las curiosidades del Teorema de Pascal es que dados 6 puntos, existen 60 maneras diferentes de construir exágono, de donde deducimos que dada una cónica existirán 60 rectas diferentes de Pascal. La cuenta de 60 se obtiene con un sencillo cálculo sobre el número de ciclos de Hamilton de un grafo completo de 6 vértices.

Aunque no se cuenta con la prueba que Descartes pudo haber diseñado, hoy en día existen numerosas pruebas de su teorema, con muy diversas técnicas. Como decíamos antes, es un resultado que encaja perfectamente en la geometría proyectiva, y de hecho su dual proyectivo es el teorema de Brianchon, que afirma:

Sea ABCDEF un hexágono formado por seis rectas tangentes de una cónica. Entonces, los segmentos AD, BE, CF se intersecan en un solo punto P.

El teorema se ilustra con la siguiente figura:

Uno de los resultados más interesantes sobre las cónicas es que cualquiera de ellas está determinada conociendo cinco de sus puntos. Existe una relación entre este teorema y el de Pascal. En efecto, dados cinco puntos, el teorema de Pascal permite construir de manera efectiva la cónica correspondiente.

En este enlace el lector puede encontrar una construcción del Teorema de Pascal usando Geogebra.

Agustín Carrillo de Albornoz (Catedrático de Matemáticas y Secretario General de la FESPM y de la FISEM) y  Manuel de León (CSIC, Fundador del ICMAT, Real Academia de Ciencias, Real Academia Canaria de Ciencias, Real Academia Galega de Ciencias).

Etiquetas: , , ,
Categorias: General