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Outline of the Seminar

/O Complex networks and the brain I

U Anatomical Networks

U Functional Networks

U From Healthy to Impaired Networks
- /
\

o Applications

O Mild Cognitive Impairment

Q Evaluation of Trauma Thera b
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0 Evolutionary Network Models “ & A
Q Mild Cognitive Impairment g o) A
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Outline of the Seminar

/O Complex networks and the brain I
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Read more at:
Boccaletti et al.,
Phys. Rep., (2006)

Complex Networks and the Brain

d Complex Networks Analysis has been SUCCESSFULLY applied to many kinds of
different COMPLEX SYSTEMS:

P, SF-like networks

/g—-l‘

F0g 9
-Q—i_ - ,
- ﬁk T- Semannc nets
o ,gf;-*l 9 h_,_\gv Q
o /f o 4 - | Intemet 0 -
QI\ d\du © | metabolit maps Q T
) c
Qo 3% g) software gamso oF Electronlc circuits
o) protepmeq iQ
o . ! IMutualistic
'EJ' b
I
cortical maps

From: R.V. Solé and S. Valverde
ER graph )
stap Modular ER graph Lecture Notes in Physics, 650, 189, 2004

mesh tree
-
L 11
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Complex Networks and the Brain

L The brain is the most challenging complex systems that we are coping with:
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Read more at:
Bullmore et al.,
Nature Rev. 10,186 (2009)

Histological or
imaging data

- Cross-correlation

- Wavelet coherence
}V\NWVMWW'\T - Sync. likelihood
- Generalized Sync.
- Phase Sync.
3 WW‘W - Mutual Info.
- Granger Causality

- Histological Analysis Structural brain network Functional brain network

-DTI (MRI) Sensorimotor
Premotor

Temporal pole

Graph theoretical analysis
From Bullmore & Sporns, Nature Rev. 10, 186 (2009)
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Anatomical Networks
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Read more at:
Sporns et al.,
PLoS Comp. Biol. 1, e42 (2005

Anatomical Networks 3000

J Anatomical Networks: The connectome

O A connectome is a comprehensive map of neural connections in the
brain. The production and study of connectomes, known as connectomics,
may range in scale from a detailed map of the full set of neurons and
synapses of an organism to a macro scale description of the structural
connectivity between all cortical areas and subcortical structures.
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Anatomical Networks

. . o Sensory Neurons o Interneurons ; Motor Neurons
O Anatomical Networks: JErE - S % e
O| $og° =+ g S A R i
. . B 1 et S g
C. Elegans: It is the only living system £ 7% ] f;-;";
that has been fully mapped. It has 302 % ey 2% :
vo s . [ EE s ] e o
neurons and average degree <k>=29, e e o w5 G reE
&0 % “ou * "Ef' - R I
ofs - — - e mmine
It has low shortest path and high ¢ i A .ot
clustering: it is a small-world network. 3 SRR .
o > |5 | e
Existence of network motifs. e LA R
The tail of the distribution of degrees , oo G0
p(k) is power-law. §
S ¥

Gap juntions connections and chemical synapses of C. Elegans
neurons. From Varshney, PLoS Comp. Biol, 7, 1001066 (2011)
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Anatomical Networks

(J Other anatomical networks:

U Macaque cortex:

macaque cortex
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N= 52 Brain Areas and L=820
Small-world
No power-law

From Sporns et al., Neuroinformatics, 2, 145 (2004)
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Anatomical Networks

(J The anatomical structure of Human Brain:

MRI Acquisition O Main results are obtained
Segntation T1w high res. Diffusion ?pectrum Imaging from magnetiC resonance
3 g 2 imaging

AN 2 Q Difussion Tensor Imaging
@1 (DTI) and Difussion Spectrum

Tractography Imaging (DSI) allow
reconstruction of region
connectivity (white matter)
by mesuring the difussion of
water molecules.

Whole brain structural
connection network

Partition into 1000 F@s
¢ pT
VB o

L

Hagmann et al. (2008) PLoS Biol. 6, e159
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Anatomical Networks

(J The anatomical structure of Human Brain:

O Exponential (not scale-free)
degree distribution (note that
there are 66 subregions and
998 ROIs).

O Small-world attributes.

O Multiple modules interlinked
by hub regions.

O Positive assortativity.

Hagmann et al. (2008) PLoS Biol. 6, e159
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Anatomical Networks

O Small-world every where!

Small-World Brain Networks

DAMNIELLE SMITH BAS
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It's a small world in your brain after all
Abnormal brain organization in Alzheimer's disease patients may
lead to easier diagnoses

by Jane Liaw

Your brain is a complex structure, a vast network of neurons responsible for
thought, feeling, impulse. Michael Greicius, assistant professor of neurology, has
long been fascinated with the mysterious workings of the brain, calling it “the organ
that talks back to you.” Mow Greicius and his co-workers have discovered
differences in the brain networks between people with Alzheimer's disease (AD)
and healthy controls—differences that may soon lead to easier diagnosis of the
disease

Metworks of all kinds work best when they include many hubs, such that data
people or other elements can zip between them. This networking structure is called
“small-world” and occurs in many areas of life, including our own brains

The hubs in small-world networks aren't necessarily close to one another, but they
can be reached from other hubs through just a few steps, making flow more
efficient. Take, for example, the path of news from a small town in the Bay Area
such as Vallejo. A story from Vallejo might be reported by the media hub in San
Francisco, and perhaps picked up and reprinted by media hubs in New York or
internationally. The news doesn't travel from that Bay Area town to New York
through every small town media outlet in between

-
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tecnologia Universidad
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Anatomical Networks

O Small-world every where!... so what?

One of the first contributions of the Complex Network Theory to biological
systems is the seminal paper of Watts and Strogatz

L actual L random cactual Crandom
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05

The small-world of C. Elegans neural network , with an edge joining
two neurons if they are connected by either a synapse or a gap junction
(n= 282, <k>= 14.). Table from Watts et al., 393, 440 (1998)
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Anatomical Networks

O The Watts and Strogatz (WS) model: Small-world region
TR ore e o B gt T
Fegular Small-world Random (e = o 1
osl °* Clpy 1 CO) | © ]
- I:I -
0.6 C 5
04l . o ]
AR R ]
=0 ' > p=1 e .o, :I P
Increasing randomness 0 T e - |
0.0001 0.0 0.m 0.1 1

P

O Nevertheless, the WS model does not take into account many features of
the brain networks such as: modularity, assortativity, existence of hubs...
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Anatomical Networks

O ... in addition almost any network is small-world!

The larger the network, the higher probability to be small-world.

N
<€
1 e e e — N .« . . .
g — The rewiring of the links in
(p)“ NN R S order to entre the small world-
WO RN region goes with:
0.6 VYU W\ Y
\ A\ S p~1/N
0.2 _-
_ == Figure from Barthelemy, PRL, 82,3180 (1999)
S0 10° 107 1
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Anatomical Networks

O Are anatomical networks efficient in transmitting information?

OPEN ( ACCESS Freely available online PLOS compurarionaL sioLoGy

Nonoptimal Component Placement, but Short
Processing Paths, due to Long-Distance
Projections in Neural Systems

Marcus Kaiser' 2™, Claus €. Hilg|eti|.g3’4

1 5chaal of Camputing Science, University af Neweastle, Mewcastle upan Tyne, United Kingdam, 2 Institute af Neuroscience, University af Mewcastle, Newcastle upan Tyne,
United Kingdam, & Internatianal University Eremen, Schaal of Engineering and Science Eremen, Germany, 4 Bastan University, Sargent Callege, Department of Health
Eciences, Bastan, Massachusetts, United States of America

It has been suggested that neural systems acress several scales of organization show optimal compoenent placement, in
which any spatial rearrangement of the compenents would lead to an increase of total wiring. Using extensive
connectivity datasets for diverse neural netwerks combined with spatial coordinates fer netwerk nodes, we applied an
cptimization algorithm te the netwerk layeuwts, in erder to search for wire-saving compenent rearrangements. We
found that optimized compenent rearrangements could substantially reduce tetal wiring length in all tested neural
networks. Specifically, tetal wiring among %5 primate (Macaque) cortical areas could be decreased by 32%, and wiring
of neurenal netwoerks in the nematede Caegnorhabditis elegans could be reduced by 48% on the glebal level, and by
492 for neurens within frental ganglia. Wiring length reductions were possible due to the existence of long-distance
projectiens in neural networks. We explored the role of these projectiens by comparing the original networks with
minimally rewired networks of the same size, which possessed only the shortest pessible connectiens. In the minimally
rewired netwoerks, the number of processing steps aleng the shertest paths between compoenents was significantly
increased compared to the criginal networks. Additional benchmark comparisens alse indicated that neural networks
are more similar to network layouts that minimize the length of processing paths, rather than wiring length. These
findings suggest that neural systems are not exclusively optimized for minimal global wiring, but for a variety of

factors including the minimization of precessing steps.
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Anatomical Networks

O Are anatomical networks efficient in transmitting information?

Macaque cortex: M original [ optimized
— 103
E ﬁﬂx-a 500 -
£ 48} 400
g 300+
5 %6r
2 2 200+
$ 12F 100+
® 0
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M original [ ] minimal

371
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. g | 10k //
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Functional Brain Networks
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Measurement of brain activity

Complex Systems G
Seminar at U.P.M., March 20

Functional brain networks

L How to obtain a functional network:

STEP 2

N e T | \ P Y

A A— (P

P O T A

A s )

Time series analysis

cSaG

STEP 3

Sensorimotor

Temporal pole

Network Analysis
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Functional brain networks

O STEP 1: How to measure the brain activity

O Functional MRI (fMRI). The detection of changes in regional brain activity
through their effects on blood flow and blood oxygenation (which, in turn,
affect magnetic susceptibility and tissue contrast in magnetic resonance
images). High spatial resolution (~mm?3) but low temporal resolution (-~ seconds).

O Electroencephalography (EEG). A technique used to measure neural activity
by monitoring electrical signals from the brain, usually through scalp electrodes.
EEG has good temporal resolution but relatively poor spatial resolution.

O Magnetoencephalography (MEG). A method of measuring brain activity by
detecting perturbations in the extracranial magnetic field that are generated by
the electrical activity of neuronal populations. Like EEG, it has good temporal
resolution but relatively poor spatial resolution. It has better resolution than
EEG.

d°~° centro de .i.
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Functional brain networks

O How to measure the brain activity

Read more at:
Basset et al.,
PNAS, 103, 19518(2006)

MEG and EEG allow the band decomposition of the signal into frequency bands

Wavelet
decomposition  Frequency
level range, Hz Corr T k L C o £ S (x1073)
Resting
1 37.5-75 0.18 = 0.02 0.50 £ 0.05 16.3 £ 5.1 4505 0.23 = 0.02 1.9x0.2 61 £ 14 9.7 £1
2 18.8-37.5 0.26 = 0.02 0.74 = 0.04 12.6 = 3.1 5205 0.21 = 0.02 1.920.1 70 =M 8.2*2
3 9.4-18.8 0.30 = 0.03 0.81 = 0.03 124 = 1.8 5404 0.20 = 0.1 1.9x0.2 100 = 72 632
4 4794 0.30 = 0.03 0.82 = 0.03 123 £ 2.0 5404 0.21 = 0.01 1.9+0.2 106 = 75 6.4=*3
5 2347 0.30 = 0.02 0.81 = 0.02 125+ 2.0 5204 0.21 = 0.01 2.0£041 118 = 71 762
3 1.1-2.3 0.33 = 0.05 0.83 = 0.02 13.7 £ 3.3 5104 0.23 = 0.02 1.9+0.1 137 £ 62 6.0 =2
Tapping
1 37.5-75 0.18 = 0.03 0.49 *+ 0.09 16.9 = 5.1 4.4+ 0.6 0.23 = 0.02 1.8+0.2 132 = 21
2 18.8-37.5 0.23 = 0.02 0.69 = 0.04 13.0 £ 2.6 5004 0.21 = 0.01 2.0£01 1059
3 9.4-18.8 0.27 = 0.02 0.77 = 0.03 12.2 = 1.7 5204 0.21 = 0.01 2.0£0.1 118 = 27
4 4.7-9.4 0.28 = 0.03 0.79 + 0.02 12.7 = 2.1 5.2+ 0.5 0.21 = 0.01 1.9+0.2 116 = 35
5 2.3-47 0.30 = 0.05 0.81 = 0.01 13.8 = 4.9 5.1*0.5 0.21 = 0.01 1.9+0.2 137 = 47
6 1.1-2.3 0.34 = 0.06 0.82 = 0.01 16.7 = 8.3 4.9 + 0.8 0.22 = 0.02 1.7x0.2 144 = 55

Corr: average correlation of the whole brain network before thresholding;

T: threshold applied to wavelet

correlation matrices; k: average degree of the network; L: average path length; C: average clustering; o:
small-world scalar value; {, characteristic length scale in millimeters; S, synchronizability. (N=275)

<2 {TB
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Functional brain networks

O STEP 1: How to measure the brain activity

O LIMITATIONS:
O Low spatial resolution (we have ~10'! neurons)
O Overlapping of measurements (not clear parcelation)
QO High variability in the results
U Functional networks are not static

Q Brain is not an isolated system
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Functional brain networks

O STEP 2: Time series analysis

0 We have to extract correlations between nodes/regions

O Several linear and nonlinear | ...
techniques:

o Cross-correlation
o Wavelet coherence A e s A A Ay Pp
o Synchronization Likelihood

o Generalized Synchronization

o Phase Synchronization 4 .qu, |‘ |
o Mutual Information *M"WMMMMM ’ WM

o Granger Causality S

For a review read: =

Pereda et al, Prog. Neurobiol, 77 (2005) [ *+*~
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Functional brain networks

 STEP 2: Time series analysis

O LIMITATIONS:
Q It is difficult to evaluate causality
O High variability in the results
U Functional networks are not static

O In EEG and MEG, we only measure cortical activity
(missing interactions)
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Functional brain networks

O STEP 3: Complex Networks Analysis

O We analyze the network structure and its influence in the

processes occurring in it:

modules
modular structure
modularity

AN

shortest path triangle
characteristic path length clustering coefficient
global efficiency transitivity

closeness centrality

For a review read:

Rubinov et al., Neuroimage, 52, 1059 (2010)

Complex S
Seminar at U.P

hub nodes
betweenness centrality
other centralities

IRNARS

motif degree

anatomical motifs degree centrality

functional motifs participation coefficient
degree distribution

centro de ase
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Functional brain networks

O STEP 3: Complex Networks Analysis
O LIMITATIONS:
O Real networks are weighted and directed
O High variability in the results
O Functional networks are not static

O In EEG and MEG, we only measure cortical activity

weighted undirected networks bi nary undirected networks

structural datasets: diffusion MRI, structural MRI
functional datasets: functional MRI, MEG

]
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Functional brain networks

O Complex networks methods give useful information at 3 different levels:

v Characterize the topology of brain functional networks and its influence in
the processes occurring in them:
O Small-world topology -> High efficiency in information transmission.
O High clustering -> Good local resilience.
0 Modularity -> Segregation & integration of information.

d°~° centro de -i-
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Functional brain networks

O What are the main characteristics of brain functional networks:

O Small-world topology -> High efficiency in information transmission.

O High clustering -> Good local resilience.

Q For a low number of nodes: power-law distribution with exponential decay
Q For high number of nodes: scale-free behavior

O Modular networks, related with the anatomical parcelation

O Assortative networks: hubs are linked together

d0~° centro de -i-
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Functional brain networks

0 Let’s se some fingerprints of the functional brain networks:

k endi
PRL 94, 018102 (2005) PHYSICAL REVIEW LETTERS 14 IANUARY 3005

Scale-Free Brain Functional Networks

Victor M. Eguiluz,' Dante R. Chialvo,” Guillermo A. Cecchi,® Marwan Baliki,? and A. Vania Apkarian®

Ynstituto Mediterrdneo de Estudios Avanzados, IMEDEA (CSIC-UIB), EQ7I22 Palma de Mallorca, Spain
*Department of Physiology, Northwestern University, Chicago, Hinots, 60611, USA
*IBM T.J. Watson Research Center, 1107 Kitchawan Rd., Yorktown Heights, New York 10598 USA
(Received 13 January 2004; published 6 January 2005)

Functional magnetic resonance imaging is used to extract fuzctional networks connecting correlated
human brain sites. Analysis of the resulting networks in different tasks shows that (a) the distribution of
functional conmections, and the probability of finding a link versus distance are both scale-free, (b) the
characteristic path length is small and comparable with those of equivalent random networks, and (c) the
clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these

properties, typical of scale-free small-world networks, reflect important functional information about
brain states.

DO 10.1102/PhysEevLett 84018102 PACE mumbers: 87.18.5n, 87.19.La, 858.75Da, 89.75.He

d°~° centro de !i.
B tecnologia Universidad
CSG I biomédica Rey Juan Carlos




Functional brain networks

1 Scale-free brain functional networks

O Two activities: finger tapping and listening to music
O ~ 400 events every 2.5 seconds (fMRI)
O 36 x 64 x 64 brain sites (147456 voxels)

O The linear cross-correlation is measured

(V(xy, OV (xa, 1)) — (V(xq, 1))(V(xa, 1))
a(V(x;)o(V(x,))

r(’\.]J ,\'2) =

Q Several thresholds are considered in order
to obtain the adjacency matrix.
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Functional brain networks

1 Scale-free brain functional networks

Scale-free distribution Finger tapping
4
10 T |:|||||| IR T T 5 |‘|..||.|_|||| IR . IIIIIII|==|
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Read more at:
Eguiluz et al.,
PRL, 94,018102 (2005)

°O

Functional brain networks

1 Scale-free brain functional networks

fMRI functional networks are small-world, scale-free and assortative

1
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Read more at:
Guimera et al.,
Nature 433, 895 (2005)

Functional brain networks

O Defining the role of nodes with regard to the community structure

Guimera et al., investigated the role of the nodes inside the community

Functional cartography of complex
metaholic networks

Roger Guimera & Luis A. Nunes Amaral

NICO and Department of Chemical and Biological Engineering, Northwestern
University, Evanston, Hlinois 60208, USA

High-throughput techniques are leading to an explosive growth
in the size of biological databases and creating the opportunity
to revolutionize our understanding of life and disease. Interpre-
tation of these data remains, however, a major scientific chal-
lenge. Here, we propose a methodology that enables us to extract

895
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Functional brain networks

O Defining the role of nodes with regard to the community structure

It is possible to evaluate the functionality of t he nodes from the topological properties:

Within-module connectivity: .
@
Zj = —— 2
a
s, E
L
£
Participation coefficient: Prs
N K 2 Participation coefficient
15
Pi=1-) D
=1 !

(Figures from R. Guimera et al., Nature 433, 895 2005)
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Functional brain networks

0 Community analysis gives information about the network characteristics and
the role played by nodes (specially hubs).
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Functional brain networks

0 Community analysis gives information about the network characteristics and
the role played by nodes (specially hubs).
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Functional brain networks

0 Community analysis gives information about the network characteristics and
the role played by nodes (specially hubs).

B Frontal module (F)
B Central module (C)
H

O Provincial hub Connector hub

(O Provincial nonhub[ ] Connector non—hub Posterior module (P)
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From Healthy to Impaired Networks
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From healthy to impaired networks

O Complex networks methods give useful information at 3 different levels:

> ldentify differences between healthy brains and those with a certain
pathology:

O Quantify evolution towards random topologies.

O Evaluate the loss of modularity in the networks.

O Quantify the increase of energy expenses.
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From healthy to impaired networks

O Complex Network analyses of brain diseases

Q Alzheimer.
O The overall synchronization of the network is decreased.

O The average path length increases (probably as a consequence of the reduction of the
synchronization).

O The clustering coefficient is significantly reduced (the network evolves to random
topologies).

O Mild Cognitive Impairment.
O The average synchronization increases.

O Network outreach increases as a consequence of an unbalanced increase of the
synchronization in the long-range connections.

O The network becomes more random.
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Read more at:
Stam et al.,
NBP, 1, 3 (2007)

From healthy to impaired networks 310

 Complex Network analyses of brain diseases

O Schizophrenia.

O The small-world properties of the network are impaired (specially at low-frequency
bands).

O Clustering and average path length are shifted to random configurations.
O The hierarchical configuration of the network is also affected.
Q Epilepsia.
QO Synchronization increases during the epileptic episodes.
O As a consequence, clustering coefficient increases and average path length decreases.

O Changes are more significant at delta, theta and alpha bands.
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Applications

Mild Cognitive Impairment and Traumatic Brain Injury
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Applications: Mild Cognitive Impairment

Advantages Drawbacks

ﬁ We have information of the braim ﬁ We are projecting the activityh
as a whole and not only of its billions of neurons into a few nodes.

isolated components.

U The activity at each position is

O We can relate the information strongly influenced by its neighbors.

contained in the t0pology. wi.th.the O Experiments are expensive and it
dynamical processes occurring in it. is difficult to find volunteers.

O We can try to identify O There exists a great variability of
differences between healthy and the recorded activity between
impaired  brains in  order to individuals (and even in the same

individual).

understand and prevent different
Qam diseases. / \D Anatomical and, specially/
f

unctional networks are not static.

GOOD NEWS CAUTION! High risk of GIGO
Possibility of clinical applications (Garbage In, Garbage Out)
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Applications: Mild Cognitive Impairment

O What is Mild Cognitive Impairment (MCI)?

KA brain disorder in which thinking abilities are mildD r
impaired. Individuals with MC| are able to function in /’
everyday activities but have difficulty with memory, trouble

remembering the names of people they met recently, the flow W}
AN {
‘)

of a conversation, and a tendency to misplace things. Every
kyear, around 10% of MCI patients develop Alzheimer. j

O The experiment

We performed magnetoencephalograms (MEG) to a group of 19 MCl's patients and 19
control subjects during a memory task. By means of the synchronization likelihood (SL) we
quantified the interaction between the 148 channels of the MEG system and we obtained
a weighted connectivity matrix between cortical areas.

Memory task experiment Time series Weighted Network

Svnchronization

Likelihood Normalization Complex

# Networks

Analysis
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Applications: Mild Cognitive Impairment

O Network normalization allows analysis of the weighted matrices:

w@-j —min[wij]
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Applications: Mild Cognitive Impairment

O Topological anaylisis of the functional networks of both groups (Control and MCI):

Matrix normalization (P)
We map the weights of the
synchronization matrix e, into a
continuous bijective map M:R —
[0,1]. The obtained matrix P {p;/}
can be interpreted as a matrix of
probabilities that tell us how
probable the existence of a link
betweennode i and j is.

@, — mjn((oy.)

Py = max(e,) — mm(c)u)

Mean Shortest path (L)
[t measures  the shortest
topological  (not Euclidean}

distance /; between any pair of
nodes in the network.

Mean Clustering (C)
It measures the probability that
two neighbors of a certain node
are also connected with each
other.

Z PP iPi

f_ Zp.yp:k

C

Network modularity (Q)

Takes into account the number of
links between the nodes of the
same community and measures
the statistical deviation from a
random assignment of nodes
between the existing communities

1 Dy
Q= > i — P16 e, e5)

pnet . pnet
1'1.:’.

"9,

cSaG

Network outreach (0)
The outreach O, balances the

distance of the connections of a
node i with their probability

O = Z p,d;
eV (i)
Weighted neighbor degree
(Knn)
Average number of neighbors of

i’s neighbors over the average
number of i’s neighbors.

Z PijPjk
k].VN _ j.k

E Pij

Parameter \ormalr ation

We generate a set of 100 network
surrogates by random permutation of
the matrix coefficients. Next we
normalize each network parameter X
with the average X=X Xian
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Applications: Mild Cognitive Impairment

O Differences between the MCI and Control groups:

25r
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% Variation over control average
a
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Fig. 4. Percentage of variation and statistical significance. Per-

centage of variation of the average degree I\, average shortest path L and its
normalized value L = L , hetwork outreach O and normalized outreach

L]‘K‘LTL
O = OO , clustering ' and normalized clustering C = CC and network
modularity. Circles correspond to p < 0.03 and stars to p < 0. 001, specifi-
cally: O (p = 0.007), C' (p = 0.002), Q@ (p = 0.0033), K ,(p = 0.018), L.

(p=0.025 )andO(p*[}OQf)

O Global Parameters:

O The network strength K increases (+15.9%)

O Network outreach increases (+23.4%)
(and more than the increase in K)

O The network modularity decreases (-13.5%)

0 Normalized Parameters:

O Normalized clustering decreases (-13.6%):

GCoNTROL =1 76 > EMCI=1 52

O Normalized outreach increases (+6.7%):
QCONTROL =0 63 > OMCI =0.67

CAUTION! The functional network
is becoming random
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Applications: Mild Cognitive Impairment

O Differences between the MCI and Control groups at the INTER-LOBE connections:

N
o

Q Intra-lobe synchronization:

ge
o

o

O The intra-lobe synchronization increases

W
o

O The inter-lobe synchronization increases
(more than the intra-lobe sync.)

O Modularity decreases

% Variation over control avera
Aenpow  yasuasis-inQ  Yasuauis-u|

C FL FR TL TR O
Lobe

Fig. 5. Mesoscale analysis. Percentages of variation in the MCI group with

respect to the control one, of the strength inside each lobe (A), the strength of the CAUTI ON ! The Segregated Operation
links going out from each lobe (I3), and the lobe modularity (C'). In (1)), percent- Of the bra-in -iS decreasing

ages of variation of the lobe-to-lobe strength. Lobe code: 1=central, 2=frontal
left, 3=frontal right, 4=temporal left, 5=temporal right and 6=occipital.
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Applications: Mild Cognitive Impairment

L Degree, clustering, outreach A . B
and knn distributions: 08 ¢ 1 018 Do
< 06 %D% - 0.16
O MCI networks have nodes with o @ - 1
higher connectivity. 047 0 014/
- : 0.2 %% i 012r
O The clustering increases with the o g ®
degree (in both Control and MCI). 0 ' 0.1
0.12 16
Q For the same degree, outreach is 01l a8 C_ 5|
higher at the MCI group. '
~ 0.08] < 141°
QO Networks are assortative S S
0.06¢ ~ 13
D -
0.04; ;; 121
0.02 ' ' 11 : :
10 15 20 10 15 20
k kK

Fig. 3. Several network parameter distributions for the control
(green circles) and MCI (red squares) groups. (A) Probability dis-
tribution of finding a node with a degree higher than k, (B) clustering coefficient

C'(k), (C) outreach O(k) and (D) average nearest neighbors degree k., (k).
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Applications: Mild Cognitive Impairment

O From macroscopic (network) to microscopic (node) analysis:

O Within module degree: Q Participation coefficient:
p— Jr\rl'_' 2
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Fig. 6. Community structure and roles. (A) Within-module degree =z; for each node in the network of the control group as a function of its corresponding
participation coefficient p;. Only the first 13 nodes with the highest z; and p; are labelled. Their positions within the corresponding lobe are marked in (B) with circles

for those with the highest z; and with triangles for those with the highest p,.
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Applications: Mild Cognitive Impairment

O From macroscopic (network) to microscopic (node) analysis:

Nodes increase their participation

> A
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Fig. 6. Community structure and roles. (C') Within-module degree differences between MCI and control group as a function of
the participation coefficient differences for each node. Again, only the first 13 nodes with the highest differences are labelled and accordingly marked within their lobe.

(D) Position of nodes with higher increase of the z; (circles) and p; (triangles). Lobe color scheme: red-central, blue-frontal left, black-frontal right, magenta=temporal
left, green=temporal right, and cyan=occipital.
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Applications: Mild Cognitive Impairment

Q Caution, GIGO is around...

“Lies, damned lies and statistics”

1950-55 1956-60  1961-65  1966-70 '19?1 75- 1976-80

~-Denmark - __1803.____ 1797 ____ B2 | 1.8.1.,1___J-LEil_.;-,-___lS?m.J’__,
| Sweden 1796 1794 1809 1805 {1804} 1812 |
Austria 176.3 177.0 179.2 178.5 i 178.7 | 179.6
Belgium 176.2 177.3 177.2 1794 11792 179.5
Finland 177.8 179.0 179.6 177.9 1 178.0 E 178.7
Greece 174.7 175.4 176.6 177.0 i 178.4 | 178.6
Ireland 174.9 176.3 176.1 176.9  177.0 E 177.4
o Taly 1725 1743 1749 1747 __ 117544 1771
. Spain 171.3 171.7 73.3 174.7 v 1757 i 176.1 |
Erom - ~Portugal " [68.8 " f70.0" [70.00 "~ 1698 "~ i' 12T ’: B X
The Evolution of Adult Height in Europe: A BriefNote* 77777 s
Jaume Garcia and Climent Quintana-Domeque Table 1. Average heights by vear of birth, men, centimeters
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Applications: Mild Cognitive Impairment

Q Caution, GIGO is around...

200 20
190F 1 o
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Sweden Spain Control MCI

[ MCI diagnostic must be done by analysing longitudinal recordings ]
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Applications: Mild Cognitive Impairment

Q Some conclusions

We need longitudinal
experiments in order
AN to understand the
emergence of MCI

O High Synchronization
M.C.1. O Low clustering
O Higher outreach
O Low modularity

?ﬂ \_ O Higher Rnadomness )
z | A
5 i The evolution of MCI to
7 ? Alzheimer is still unknown
- i ... despite there are some
@) i clues
T N
)
p - O Low Synchronization
Alzheimer QO Low clustering
O Higher Randomness
Randomness
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Applications: Traumatic Brain Injury (TBI)

O A good candidate: Trauma recovering therapy

Accident Head Trauma Cognitive Therapy

NINTENDSDS_

MEG recording MEG recording
(after the accident) (9-14 months of therapy)

Comparison
of both networks

C—
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Applications: Traumatic Brain Injury (TBI)

O A good candidate: Trauma recovering therapy

Band 6 [1-4 Hz]

ek porsd . O Network changes:
25
@2 10 ‘ = B . *$ 2 .
3 $ 15 O The alfa band is overconnected
z &
& st L,
£ I £ " | e— 0 The delta band is underconnected
§ . i O The cognitive therapy shifts network
5 i, parameters towards control values
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10— L £ (G o1 EC &
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Evolutionary Network Models

Mild Cognitive Impairment and Traumatic Brain Injury
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Evolutionary network models

> Develop models in order to explain the changes found in impaired
functional networks:
O Identify what are the rules that determine the network distortion.
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Evolutionary network models

O Two specific applications of network modeling:

O Mild Cognitive Impairment

O Traumatic Brain Injury
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Evolutionary network models

O Mild Cognitive Impairment: Real data versus evolutionary models

B
A - 0.6
0.3
0f Real data
-0.3
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Evolutionary network models

0 Develop models in order to explain the changes found in impaired functional
networks:

1) We select a link randomly.

2) We change the weight of the link according to a certain function:

W'ii=w;i [1+A+n] §(d;;)

3) We normalize and recalculate the network parameters.

4) We go back to step 1.
) g P W';= modified link weight

W;; = previous link weight
A=degradation rate (A >0)

N= noise term

&(d;;)= length dependence function
d;= link length

d0~° centro de -i-
B tecnologia Universidad
CSG I biomédica Rey Juan Carlos




Evolutionary network models

L Develop models in order to explain the changes found in impaired functional

networks: y 0.16
Healthy brain 0.15
10
40,14
/ﬁ_ ©
ol 0.13

Impaired brain

8.5 0.12
0.1 0.3
C D
. 0.09} 0.25
O Length independent
O oost 02 ©
O Length dependent
0.07; 0.15
0050 20 30 40 o0 10 20 30 40 O
modified links (x 10%) modified links (x 10%)

Figure 6. Modeling the disease. Evolution of network parameters [shortest path (A), clustering
(B}, outreach (C) and modularity {D}] as the number of impaired links increases. Fed dashed lines are
the mean values of the MCI group. Blue squares correspond to £(d;;) = 1 and black cireles to

£(ds;) = Balyd — di;)®. Parameters used in the simulations are given in Fig, § caption.
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Evolutionary network models

U Modeling network recovery in Traumatic Brain Injury (TBI):

i
i i ' A
= T'A;_4 ) T =m 2| +b
max(Aj})
Contrasting model (T+):
The goal of this model is enhancing those links with higher | M = —1_;1m'zAfo)

initial weights. This leads to an increase of the relative o
difference between higher and lower weights along the h = "mf“(Aq)
evolution. 1—min(4; )

Unifiying model (T-):

R
the global average strength of the matrix decreases and, in m; 1—min(A )
addition, the relative differences between link weights are | —kemin(4))
reduced at each time step. b = 1_min(A,.3

0
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Evolutionary network models

@ Pre (before therapy) B Ppost (after therapy) % Control (healthy subject)

Delta band
A
32 i ;— 0S = 0.46 ; (-
Contrasting model , \ / / t/
L E EC C
24 032
Unifying model b s
I B
12
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Evolutionary network models

@ Pre (before therapy) B Ppost (after therapy) % Control (healthy subject)

C Alpha band
32 -
\ " e 7 045 /
Contrasting model \ \\A // /é / /{é
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Conclusions

0 Complex networks methods give useful information (from another
perspective) about how functional brain networks behave.

O Network parameters give hints about how brain functional connectivity is
affected by different diseases. They can be use in order to distinguish between
healthy and damaged brains.

O We can develop evolutionary network models that mimic the
evolution/recovery of different diseases.

O We have to be cautious since there is a high variability in the results.
Q Its application to the early detection of brain diseases is still missing.

Longitudinal experiments would help in order to understand the evolution of
brain impairments and its early detection.
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Thanks for your attention!

More information at:
http://complex.etsit.urjc.es
or

javier.buldu®urjc.es



