Posts etiquetados con ‘zoonosis’

¿Como es un laboratorio de alta seguridad biológica por dentro?

Hace unos días vinieron del programa Lab24 de RTVE a grabar un reportaje al CISA, el mayor centro de alta seguridad biológica de España, al cual dedicamos ya un post en este blog. El reportaje fue emitido el pasado día 8 de diciembre. En mi opinión es un buen reportaje, y refleja bastante bien lo que es el CISA, que es el centro donde yo trabajo, así que he pensado que podría ser de interés para mostrárselo a los lectores de este blog. Para verlo pueden pinchar en el siguiente enlace o en la imagen siguiente:

NOTA: Pueden verme hablando de enfermedades emergentes a partir del minuto 7 y 45 segundos. No es que diga mucho, ni lo haga con mucho entusiasmo (se me da mejor escribir, no hay duda), pero bueno, así por lo menos me pueden ver.  Por cierto, se dice algo incorrecto inmediatamente antes de mi intervención: la enfermedad del Nilo Occidental no es transmitida desde los caballos a las personas, sino desde los mosquitos a las personas y a los caballos (para un resumen sobre esta enfermedad, consultese el post “El virus West Nile (Nilo Occidental): Preguntas y respuestas” en el siguiente enlace). En fin, un ligero patinazo (no es el único a lo largo del reportaje), perdonable dada la prisa con la que se preparan estas cosas.

 

Más posts sobre bioseguridad en este blog:

Bioseguridad: Instalaciones de alta seguridad biológica en España (I). El CISA

Bioseguridad: Instalaciones de alta seguridad biológica en España (II). El CReSA

Bioseguridad: Instalaciones de alta seguridad biológica en España (III). El Laboratorio de Seguridad Biológica L- 3 de VISAVET – UCM

Bioseguridad: Instalaciones de alta seguridad biológica en España (IV). El Laboratorio Central de Veterinaria del MAGRAMA


 

 

Etiquetas: , , , , , , , , , ,
Categorias: Bioseguridad

El virus West Nile (Nilo Occidental): preguntas y respuestas

Desde el 23 de septiembre pasado hasta hoy se han declarado nueve focos de enfermedad por virus West Nile en equinos en España, ocho en Andalucía, y uno en Extremadura (RASVE). Son los últimos de una lista que comenzó en 2010. El post de hoy va a ir dedicado a hablar de este virus de origen africano, su importancia clínica tanto en sanidad animal como en salud pública, y su presencia en España y en el contexto Europeo y Mediterráneo, donde es considerado un virus emergente o re-emergente en amplias zonas,  He escrito el post en forma de “Preguntas y respuestas” para hacerlo más ameno y divulgativo. Espero que les guste y les sea útil.

 

  • ¿Qué es el virus West Nile? El virus West Nile (WNV, por sus iniciales en inglés) es un virus emergente en amplias zonas del mundo, que produce una enfermedad neurológica grave en el hombre y en los caballos.
  • ¿Por qué otros nombres se conoce al WNV? El virus West Nile ha sido popularizado en prensa y medios no científicos como “virus del Nilo Occidental”, “virus del Oeste del Nilo” o  “virus del Nilo”.
  • ¿Cómo se transmite? Su transmisión requiere la intervención de un vector artrópodo, en este caso un mosquito. El virus prospera en su ciclo natural (o “enzoótico”, o “rural”), que se establece entre sus reservorios naturales, que son ciertos tipos de aves silvestres, y ciertos mosquitos que actuan como vectores para la transmisión (figura 1). Los mosquitos adquieren la infección al chupar la sangre de aves infectadas, y a su vez éstas adquieren la infección cuando les pica un mosquito infectado.
  • Si es un virus de aves, ¿cómo es que afecta a las personas y a los caballos? En determinadas circunstancias, el ciclo natural ave-mosquito se “desborda” y alcanza a otras especies como los equinos y los humanos (figura 1). El desbordamiento se produce cuando los mosquitos infectados entran en contacto y pican y transmiten el virus a estas especies, que son “hospedadores accidentales” o “en fondo de saco“. Se llaman así porque ellos no pueden transmitir el virus a otros mosquitos. Es en estas especies cuando este virus se hace “visible”, ya que en ellas se producen brotes de enfermedad como consecuencia de la infección.

    Figura 1. El esquema recoge el ciclo natural (o “enzoótico”) del virus West Nile entre mosquitos y aves, y el desbordamiento “spillover” que acaba llevando la infección a los hospedadores accidentales, tales como el hombre y los caballos, que padecen la enfermedad, y en los que a menudo se manifiesta en forma de brotes de magnitud variable, pudiendo oscilar entre unos pocos casos y varios centenares de casos. En humanos se estima que tras cada caso clinico grave hay unas 150 infecciones, la mayoría asintomáticas.
    (Fuente: elaboración del autor).

  • ¿Se transmite entre humanos, o entre caballos, o de caballos a humanos? No, tanto el hombre como el caballo u otros mamíferos pueden padecer la enfermedad, pero no transmitirla a los vectores. Por ello su papel epidemiológico es nulo, y se dice que son “hospedadores accidentales” (o “en fondo de saco“), y no reservorios. Ello es porque no producen suficiente cantidad del virus en sangre como para que un mosquito adquiera la infección cuando les pica. No obstante, conviene advertir que se puede transmitir de forma iatrogénica, mediante transfusiones o trasplantes de órganos que procedan de personas infectadas, así como por vía intrauterina (de la madre al feto), y lactogénica (a través de la leche materna) aunque estos casos son muy infrecuentes.
  • ¿Por qué se desborda el ciclo natural del WNV? El ciclo natural del WNV se puede desbordar por mútiples causas, que se ignoran en gran medida, pero que están relacionadas a menudo con el clima y con peculiaridades bio-geográficas, e incluso socio-económicas en los lugares donde se observan los brotes. El efecto del clima se considera determinante: inviernos suaves, abundantes lluvias en primavera (lluvias torrenciales, desbordamientos de ríos, etc) seguido de veranos secos y calurosos podrían favorecer el proceso en determinadas zonas. En general todo lo que favorezca el ciclo biológico de los vectores y su propagación y expansión, aumentará las posibilidades de que ocurra un desbordamiento del ciclo natural del WNV, lo que tiene como consecuencia el desencadenamiento de brotes en especies susceptibles como los humanos y los equinos.
  • ¿Es una zoonosis? En efecto, la enfermedad que causa el WNV en el hombre es una zoonosis en sentido estricto, ya que es transmitida al hombre desde un reservorio animal.
  • ¿Qué importancia sanitaria tiene el WNV? El WNV es relevante sanitariamente en tres ámbitos diferentes pero estrechamente relacionados: salud humana, sanidad ganadera y sanidad de los animales silvestres. De hecho, es un ejemplo de que estas divisiones de la sanidad son arbitrarias, y que para luchar contra las enfermedades es eficaz el enfoque que integre todas ellas en un concepto de “una sanidad” (“one health”), que aúne los esfuerzos de distintas disciplinas: médicos, veterinarios, biólogos ambientalistas, entomólogos, virólogos, etc.
  • ¿Qué síntomas produce? En el hombre, la mayor parte de las infecciones por WNV son asintomáticas, alrededor de un 20% puede desarrollar algún síntoma leve, como dolor de cabeza, fiebre y dolores musculares, y menos de un 1% desarrollará una enfermedad más grave, con afección neurológica, caracterizada por encefalitis, meningitis, ocasionalmente parálisis flácida o debilidad muscular severa. La edad avanzada se considera un factor de riesgo de padecer una infección por WNV grave o mortal. La tasa de mortalidad calculada para la reciente epidemia de esta enfermedad en los EE.UU. es de 1 de cada 24 casos humanos diagnosticados (4,1 %). En caballos produce una mayor mortalidad que en humanos, la enfermedad neurológica se manifiesta aproximadamente en un 10% de las infecciones, de las cuales alrededor de una cuarta parte mueren o son sacrificados para evitar sufrimiento. Algunas aves sufren una enfermedad aguda letal. Esto es particularmente notable en Norteamérica, donde se producen mortalidades muy importantes de córvidos y otras aves silvestres, algunas de ellas amenazadas de extinción. En aves de granja ha producido brotes de cierta importancia en gansos (Israel) y en avestruces (Sudáfrica).

    Blue jay

    Blue jay (Cyanocitta cristata. Ave abundante en Norteamérica, que es altamente susceptible a la enfermedad producida por el virus West Nile.
    (imagen por Rob Hanson: Fuente: Creative Commons).

  • ¿Existen tratamientos y vacunas frente a la enfermedad por WNV? No existen tratamientos específicos para la enfermedad producida por WNV. No hay vacunas aprobadas para uso en humanos, pero si las hay para uso veterinario. Las vacunas disponibles para equinos protegen frente a la enfermedad y son una buena medida preventiva en zonas con riesgo de circulación del virus.
  • ¿Que implicaciones tienen los brotes de enfermedad por WNV a nivel internacional? El hecho de que el WNV pueda propagarse internacionalmente con rapidez hace que sea una de las enfermedades incluidas en el Reglamento Sanitario Internacional de la Organización Mundial de la Salud (OMS, www.who.int ), así como en la lista de enfermedades de declaración obligatoria de la Organización Mundial de la Sanidad Animal (OIE, www.oie.int). Esto significa que es obligatorio declarar los casos de enfermedad por WNV a las agencias citadas, para poner en marcha mecanismos y normas dirigidas a evitar su expansión a través de las fronteras.
  • ¿Cual es la relevancia de este virus a nivel global? Entre los virus transmitidos por artrópodos (por ejemplo, el virus de la fiebre amarilla, el virus del dengue, o el virus de la encefalitis japonesa), el WNV es uno de los más extendidos geográficamente, y esta expansión ha ocurrido en tiempos muy recientes. Afecta a las poblaciones de todos los continentes habitados, incluida Europa, pero donde más casos de enfermedad en humanos produce es en los Estados Unidos, desde que apareció por primera vez en Nueva York en 1999, extendiéndose en pocos años por toda América, de costa a costa y de Canadá a Argentina. WNV es considerado ya endémico en amplias zonas del Nuevo Continente. En total en Estados Unidos se han declarado unos 43.000 casos de enfermedad por este virus, de los cuales alrededor de 1.800 ha sido mortales. Anualmente se producen entre 700 y 3.000 casos, y se calcula que uno de cada 24 son mortales. Los estragos producidos en las poblaciones equinas, así como en aves silvestres en este país son igualmente de gran magnitud
  • ¿Cuál es la situación en Europa? En el Viejo Mundo este virus se conoce desde hace décadas, ya que viaja esporádicamente entre África, Asia y Europa, probablemente acarreado por aves migratorias procedentes de zonas endémicas como el África subsahariana. Hasta hace relativamente poco tiempo se consideraba al WNV un virus de poca importancia en Europa, que producía brotes esporádicamente, y eran escasos y de poca importancia en general, pero desde finales de los años 90 del siglo XX, se ha venido observando una expansión geográfica, con focos situados en el sur, centro y este del Viejo Continente, desde donde se ha ido difundiendo, aumentando paulatinamente tanto el número de brotes como su importancia. En 2010 se contabilizaron en Europa 926 casos humanos, y desde entonces el número anual de casos declarados oscila entre 200 y 800. Tras reaparecer sucesivamente a lo largo de varias temporadas de transmisión, el virus es considerado endémico en amplias zonas de Europa (Figura 3). Una peculiaridad es que en Europa circulan varios linajes genéticos del virus, como consecuencia probablemente de varias introducciones independientes en el continente, a diferencia de lo que pasa en otros lugares, como por ejemplo en América, donde circula un solo linaje genético, consecuencia de una única introducción.

    Casos de enfermedad por WNV en Europa 2010-2015

    Figura 3. Disitribución de casos de enfermedad por virus West Nile por áreas afectadas en Europa y cuenca mediterránea, desde 2010 a la fecha de la última actualización (8 de octubre de 2015).
    (Fuente: European Centre for Disease Prevention and Control, ECDC: http://ecdc.europa.eu/en/healthtopics/west_nile_fever/West-Nile-fever-maps/PublishingImages/ECDC_WNF_Affected_current_and_past_seasons.png).

  • ¿Cuál es su hábitat natural? Las condiciones óptimas para el establecimiento del ciclo enzoótico (rural) del WNV se hallan en el entorno de los grandes humedales, deltas de grandes ríos, con grandes concentraciones de aves, lugares de paso y/o cría de aves migratorias, donde se dan circunstancias adicionales como la presencia de vectores en determinadas épocas del año. En los años 50 se observó circulación del virus en Egipto (Delta del Nilo) y Oriente medio, con los primeros casos graves en humanos en Israel. En los años 60 apareció en las “bocas” del Ródano (Camarga) produciendo casos equinos. También fue detectado en Portugal en la misma época. En el sur de Rusia (deltas de grandes ríos como el Don o el Volga) también ha habido brotes repetidamente, al igual que en el delta del Danubio, en Rumania. Se considera en general que son estos hábitats donde coexisten los elementos esenciales del ciclo rural del WNV (agua, aves y mosquitos) donde el virus se mantiene en circulación enzoótica, y desde los que en determinadas circunstancias se “desborda”, difundiendo hacia zonas a veces alejadas del lugar donde se mantiene el ciclo rural. dando lugar a un ciclo de tipo epidémico, que afecta al hombre y a los animales domésticos.
  • ¿Cómo se dispersa?  Las aves migratorias constituyen una de las vías de dispersión de este virus por el mundo. Pero existen muchas dudas de que un ave que adquiera la infección en una zona endémica a miles de kilómetros de Europa, llegue infectada y sea capaz de introducir el virus en este continente “de un tirón”, ya que la duración de la viremia (período en el que la sangre del ave es infecciosa para un mosquito) es corta, de unos pocos días. En cualquier caso, los mecanismos por los cuales son introducidos nuevos virus en Europa están aún muy lejos de ser elucidados, y no se pueden descartar movimientos de otro tipo, como por ejemplo, de mosquitos, que empujados por el viento pueden salvar distancias respetables, o incluso tráfico ilegal de aves exóticas. Lo que está claro, gracias a técnicas de análisis filogenético, es que se pueden datar históricamente un número muy limitado de introducciones “con éxito” del virus en Europa en el ultimo medio siglo, no más allá de una decena, mientras que los brotes se cuentan por cientos. La interpretación más sencilla de estos hechos es que en determinadas condiciones el virus introducido encuentra un hábitat compatible con su  ciclo enzoótico, que implica a mosquitos y aves silvestres locales. El virus puede permanecer circulando así en el medio ambiente durante años de forma “silenciosa“, es decir, sin producir brotes ni señal alguna de su presencia, e incluso extenderse localmente. Cuando ocurre el “desbordamiento” se originan brotes de magnitud variable en hospedadores accidentales, incluyendo aves domésticas o peridomésticas, caballos y humanos.
  • ¿Cual es el “historial” de este virus en España? Estudios seroepidemiológicos retrospectivos parecen indicar que el WNV probablemente circuló en los años ‘70 del siglo pasado en la zona del Delta del Ebro y otros lugares. Al igual que ocurrió en el resto de Europa meridional, tras aquella oleada de los años ’60 y ’70 del siglo XX el virus se dejó de detectar, para re-emerger en diversos lugares de la cuenca mediterránea décadas después. En España se detectó actividad local del virus en 2003 en el entorno del bajo Guadalquivir en aves silvestres. Desde entonces esa actividad no ha cesado de detectarse en aquella zona, incluyendo la detección de un linaje distinto y único del virus en mosquitos de Huelva en 2006. En 2004 se declaró el primer caso humano diagnosticado de enfermedad por virus West Nile en nuestro país, en Extremadura. El primer aislamiento del virus se realizó en 2007 a partir de dos águilas reales enfermas localizadas en Castilla-La Mancha. Los primeros mosquitos positivos al virus se detectaron en la zona del bajo Guadalquivir-Odiel en 2008. La eclosión definitiva ocurrió el 10 de septiembre de 2010 cuando se declararon los primeros focos de enfermedad equina por WNV en la provincia de Cádiz, concomitante con 2 casos humanos en la misma zona. Desde entonces, todos los años se vienen produciendo casos equinos entre finales de agosto y noviembre (temporada de transmisión) en el suoeste de Andalucía. El año pasado se produjo un brote en caballos en Castilla La Mancha y este año también Extremadura se ha visto afectada por un brote equino. Como se ve la actividad y extenión geográfica de la enfermedad por WNV ha ido en aumento en España, en paralelo con lo observado en el resto de Europa meridional, central y oriental.
  • ¿Por qué esta expansión reciente? Se especula con que esta expansión territorial reciente y rápida tiene relación con el cambio climático: el calentamiento de la Tierra tiene un efecto muy evidente sobre las poblaciones de vectores (mosquitos) que en temperaturas más suaves son más capaces de sobrevivir al invierno en climas templados. Sin embargo, existen otros condicionantes no climáticos que deben también tenerse en cuenta, por ejemplo, la presencia de nuevos vectores, que también pueden expandirse merced al cambio global, puede afectar a la transmisión local en una determinada región.

 

Enlaces de interés:

Sotelo, E. et al (2012) “La fiebre/encefalitis por virus West Nile: reemergencia en Europa y situación en España”, Enf Infecc Microbiol Clin  30(2):75-83 (enlace: http://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-articulo-la-fiebre-encefalitis-por-virus-west-90095248).

Jiménez-Clavero, M.A. (2012) “Animal viral diseases and global change: bluetongue and West Nile fever as paradigms”. Front. Gene. 3:105.(enlace: http://journal.frontiersin.org/article/10.3389/fgene.2012.00105/full).
Rizzoli, A., et al (2015) “The challenge of West Nile virus in Europe: knowledge gaps and research priorities”, Euro Surveill 20(20). pii: 21135 (enlace: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=21135).
Etiquetas: , , , , , , , ,
Categorias: Nuevos virus

Las aves como reservorios de virus zoonóticos

En el último número de la revista “Virología” publiqué un artículo titulado “Las aves como reservorio de virus zoonóticos” que, por el interés que creo que puede tener para los lectores de este blog, y con permiso de los editores de la revista, reproduzco a continuación.

(NOTA: Si vas a reproducir todo o parte de este artículo, por favor cita la fuente. Gracias).

 

Las aves como reservorios de virus zoonóticos

 

Resumen

Las aves forman parte de nuestro entorno. De la pléyade de virus que afectan a las aves, solo una pequeña parte son zoonóticos, es decir, pueden infectar y causar enfermedad en la especie humana. De entre ellos destacan dos grupos: el primero es el de los virus de la gripe o influenza aviar, transmitidos fundamentalmente por la vía aerógena; y el segundo está constituido por ciertos arbovirus (virus transmitidos por picaduras de artrópodos) pertenecientes a las familias Flaviviridae (género Flavivirus) y Togaviridae (género Alphavirus), que engloban patógenos humanos importantes como el virus West Nile, el virus de la encefalitis japonesa, el virus Sindbis o el virus de la encefalitis equina del Este. Muchos de estos virus zoonóticos con reservorio aviar han causado episodios de emergencia recientemente, como el caso de la influenza aviar de los subtipos H5N1 y H7N9, ambos originados en Asia, o el virus West Nile, el cual en las dos últimas décadas ha alcanzado una distribución mundial, siendo actualmente considerado el arbovirus más extendido sobre la Tierra. Estos dos casos ponen de manifiesto el potencial de los virus zoonóticos con reservorio aviar para dar lugar a alertas sanitarias de importancia en salud pública.

Introducción

Las aves forman parte de nuestros ecosistemas naturales, de nuestro entorno Los seres humanos hemos domesticado algunas especies de aves para hacer de ellas una valiosa fuente de alimento. Ciertas aves son apreciadas como animales de compañía, y las hay que son protagonistas de diferentes formas de ocio, especialmente la caza, ya sea como valiosas piezas a cobrar o al revés, cazando para nosotros, como por ejemplo en la cetrería. En algunos casos las hemos adiestrado para utilizarlas en tareas específicas, como las palomas mensajeras. Sus plumas nos han servido como instrumentos de escritura y ornamento, y aún son muy utilizadas para confeccionar almohadas y edredones más mullidos y ropa de abrigo ligera y aislante del frío. Fascinados por la rica variedad de plumajes, colorido y belleza, las colecciones zoológicas de aves han atraído nuestra atención desde siglos, y han inspirado innumerables obras artísticas. Esta admiración ha evolucionado hoy día en una creciente afición por observar aves en su entorno natural, y los viajes y excursiones ornitológicas son ya una opción turística de importancia en algunas zonas. Tales son algunos de los variados y múltiples tipos de relación que mantenemos con las aves.

Figura 1. Avefría (Vanellus vanellus) (Imagen cedida por gentileza del autor, Rafael Palomo).

Como todos los demás seres vivos sin excepción, las aves son susceptibles de infección por un amplio rango de virus, lo cual es natural y no nos debe llamar la atención. Sin embargo, recientes crisis sanitarias, pero muy en particular la emergencia del virus de la influenza o gripe[a] aviar H5N1 acaecida a principios de este siglo, que tuvo su momento álgido en 2006 (2), han supuesto un punto y aparte en nuestra relación con estos hermosos seres que son las aves. Este artículo pretende dar una somera idea de qué tipos de virus, de entre los que podemos encontrar en las aves, suponen algún riesgo para la salud pública

Virus aviares y zoonosis

En primer lugar hay que decir que los humanos no compartimos muchos virus patógenos con las aves. Esto se debe en parte a que entre ambos existe una gran distancia evolutiva (los linajes de mamíferos y aves divergieron hace unos 300 millones de años), de modo que el salto desde las aves a los humanos no es ya de especie, sino de clase, varios taxones por encima, y por tanto más difícil. Pero también contribuyen a ello importantes diferencias fisiológicas, y en particular el hecho de que las aves poseen una mayor temperatura corporal en comparación con la nuestra, lo cual agrega dificultad a ese salto. También hay que señalar que las aves poseen un excelente sistema inmunológico, con un intenso desarrollo de la inmunidad innata (3), especialmente útil en la defensa frente a las infecciones víricas, lo cual redunda en que esa dificultad sea aún mayor.

Como consecuencia de ello, cabe decir que de entre la pléyade de virus que se han especializado en la infección de diferentes tipos de aves, que sería prolijo detallar aquí[b], tan solo unos pocos virus son claramente zoonóticos, y éstos pertenecen a un número limitado de familias víricas, fundamentalmente tres: Orthomyxoviridae (virus de la influenza o gripe aviar), Flaviviridae (fundamentalmente los virus encefalíticos del género Flavivirus) y Togaviridae (ciertos patógenos del género Alphavirus).  Se da la circunstancia de que, mientras que los primeros, los virus de la influenza o gripe aviar, se transmiten fundamentalmente por la vía aerógena (vías respiratorias), los flavivirus y alfavirus zoonóticos aviares se transmiten por medio de la picadura de vectores artrópodos (mosquitos y garrapatas, fundamentalmente), es decir, son arbovirus (de la contracción en inglés de “arthropod-borne virus”), y las zoonosis que causan son arbozoonosis (arthorpod-borne zoonoses”). De todos ellos, los más ampliamente distribuidos son los virus de la influenza aviar y los flavivirus zoonóticos, en particular algunos como el virus West Nile (en adelante, WNV), cuya distribución alcanza todos los continentes habitados de la Tierra[c]. Por este motivo y porque han protagonizado episodios importantes de emergencia y/o reemergencia en tiempos recientes, este artículo se centrará en estos dos tipos de virus zoonóticos con reservorio aviar.

La influenza aviar como zoonosis

De entre los 3 géneros conocidos de virus de la influenza, o virus gripales (familia Orthomyxoviridae), solamente uno (influenzavirus A) incluye virus zoonóticos aviares, por lo que en este artículo nos ceñiremos únicamente a éstos. Los influenzavirus A son los causantes de la “gripe A”, que engloba un rango de patógenos causantes principalmente de la gripe aviar, aunque, como se verá más adelante, un cierto número de ellos han ido evolucionando y adaptándose a determinadas especies de mamíferos, generando virus de las gripes porcina, humana y equina, entre otros

Los virus de la gripe A son marcadamente variables y heterogéneos. El aspecto más conocido de esta diversidad lo constituyen sus subtipos antigénicos. Éstos vienen determinados según la particular composición de las dos glicoproteínas de membrana que exhiben en su superficie, la hemaglutinina (HA) y la neuraminidasa (NA). En ellas residen importantes funciones como la unión a receptores celulares o los sitios principales de reconocimiento antigénico por parte del sistema inmunitario del hospedador. Se conocen dieciséis subtipos diferentes de HA (H1-H16) y nueve de NA (N1-N9)[d]. Estas dos glicoproteínas víricas se pueden presentar en cualquier combinación, lo que da lugar a 144 combinaciones o subtipos antigénicos posibles de virus influenza, distinguibles serológicamente. Cada subtipo tiene sólo una clase de antígeno HA y una clase de antígeno NA. Se denominan HxNy siendo x e y el subtipo de HA y NA, respectivamente, que poseen. Por ejemplo, H5N1 designa el virus influenza A que posee HA del subtipo H5 y NA del subtipo N1. Pero la variabilidad de los virus de la gripe A no se agota en los subtipos antigénicos, pues dentro de cada subtipo existe una considerable variabilidad genética, antigénica y fenotípica. Por otro lado, el virus posee otras 9-10 proteínas, cada una de las cuales es necesaria para distintas funciones relacionadas con el ciclo biológico del virus, y son codificadas en distintos segmentos del ARN vírico (4). Como estas proteínas también varían entre cepas del virus, resulta que al final la combinatoria de estos 11-12 elementos genera una variabilidad genética enorme en estos virus.

Toda esta variabilidad surge esencialmente de dos procesos, que dan lugar a dos fenómenos bien conocidos: 1) la “deriva antigénica” (“antigenic drift”) y 2) el “desplazamiento antigénico” (“antigenic shift”) de los virus de la gripe. El primero tiene lugar como consecuencia principalmente de la mutación y la selección que ocurre a nivel de cada segmento de ARN. La tasa de mutación de los virus de la gripe A es elevada (> 10-3 sustituciones por nucleótido por año (5)), lo cual supone una elevada capacidad para generar variantes en cada infección. A ello hay que añadir el proceso responsable del segundo fenómeno mencionado antes, el desplazamiento antigénico, que tiene lugar como consecuencia de una propiedad singular de algunos virus que, como los virus gripales, tienen el genoma segmentado: dos variantes diferentes del virus pueden intercambiar segmentos de su genoma al azar si se encuentran coinfectando al mismo individuo. Este fenómeno es conocido como “redistribución genética” (“genetic reassortment”) y ofrece a estos virus un mecanismo muy eficaz de “barajar genes”, generando combinaciones distintas que pueden igualmente probar su eficacia frente a la selección natural ejercida por el medio, que actúa de filtro, permitiendo que progresen solo aquellos virus adaptados funcionalmente a unas condiciones ambientales concretas que prevalecen en el medio al que se enfrentan.

Figura 2. Subtipos antigénicos de virus de la gripe tipo A encontrados hasta ahora en las diferentes especies de vertebrados terrestres que actúan como hospedadores (aves, humanos, cerdos y caballos) representados por su silueta en la parte superior de las columnas correspondientes. A la izquierda, los subtipos de hemaglutinina (HA) y a la derecha, los de neuraminidasa (NA). S: hospedador susceptible; T: hospedador competente para la transmisión. Fuente: elaboración propia.

La enorme  variabilidad que presentan los virus gripales ofrece una base para explicar por qué son unos de los pocos virus aviares con capacidad zoonótica. Hemos mencionado al principio las dificultades para superar con éxito la barrera fisiológica y evolutiva entre las aves y la especie humana. De hecho, superar esa barrera ha sido imposible hasta ahora para la mayoría de los virus de la gripe aviar. Sin embargo, unas pocas variantes la han podido cruzar con éxito, lo que indica que hay variantes con más posibilidades que otras para dar ese salto. Por ejemplo, de los 16 subtipos “H”, sólo 6 se encuentran en la especie humana, de los que 3 (H1-3) han conseguido adaptarse completamente a ésta (y por tanto ya no son “zoonosis”), y otros 3 (H5, H7 y H9) producen gripe A zoonótica, con casos esporádicos, sin transmisión entre humanos[e]. Para otras especies ocurre lo mismo. De igual manera, de los 9 subtipos “N” que se conocen en aves, solamente 2 (N1 y N2) se encuentran en los virus gripales que afectan comúnmente al hombre, y otros dos lo hacen en virus causantes de brotes esporádicos, como son el N7 (por ejemplo, brote de H7N7 en Holanda en 2003) y, recientemente el N9 (virus H7N9 de 2013 en China) (Figura 2).

El reservorio natural “ancestral” de los virus de la gripe A son las aves acuáticas, en particular las de los órdenes Anseriformes (gansos, patos, etc) y Charadriiformes (gaviotas, charranes, fumareles, etc). Todos los virus de la gripe A que existen en la actualidad, y que incluyen virus aviares, humanos, porcinos, equinos, etc, han derivado en último término de los que comúnmente infectan a estas aves (Figura 3). Ello es consecuencia de un proceso de adaptaciones sucesivas, que a menudo involucra especies intermedias entre el hospedador ancestral y la adaptación final. Este proceso puede necesitar décadas hasta completarse.

Figura 3. Las aves silvestres, representadas por la silueta de un pato salvaje en el centro de la figura, son el reservorio de todos los tipos de virus influenza A. De vez en cuando algunos de estos virus infectan a otras especies, y terminan por adaptarse a éstas, dando lugar a los diferentes tipos de virus gripales humanos, porcinos, equinos, etc. En la figura también se recoge el hecho de que existen virus gripales adaptados a mamíferos marinos, cuyo origen igualmente se remonta a los virus aviares. Fuente: elaboración propia.

¿Qué es lo que determina la adaptación de un virus de gripe A a una nueva especie de hospedador? Se conocen mutaciones en determinadas posiciones de las cadenas polipeptídicas de algunas de las proteínas de los virus de la gripe que están relacionadas con una mejor adaptación a determinadas especies de hospedadores. Por ejemplo, en la unión de los virus aviares al receptor celular propio de aves (α2,3 sialil glicano) juega un papel importante un número reducido de residuos aminoácidos que interaccionan directamente con el receptor (4). Determinados cambios o mutaciones en esas posiciones acarrean modificaciones en la afinidad de la HA para sus receptores, concretamente pueden aumentarla por el receptor predominante en las vías altas del tracto respiratorio de los mamíferos (α2,6 sialil glicano). La HA posee también un importante determinante de la patogenicidad de estos virus, consistente en el sitio de procesamiento proteolítico H0, que modula el tropismo tisular y la diseminación sistémica. Existen otras posiciones importantes en la cadena polipeptídica de la HA (4), pero además, el tropismo, la especificidad de hospedador y la patogenicidad no residen únicamente en la HA, sino que fuera de esta glicoproteína se han descrito varias posiciones clave en el genoma de los virus influenza tipo A que determinan no solo la patogenicidad sino también la adaptación a mamíferos, incluyendo la transmisibilidad entre éstos  –lo cual se asume que se correlaciona con el potencial pandémico de determinadas cepas-, y a su identificación completa se han aplicado diferentes grupos de investigación, en estudios denominados “de ganancia de función” no exentos de polémica (6). Si bien la mutación puntual en sitios específicos tiene un papel relevante en la evolución de los virus gripales, como generadora de variantes genéticas con adaptaciones específicas, por sí sola no parece suficiente como para dar lugar a un virus pandémico. De hecho, se cree que la mayoría de los virus gripales pandémicos han surgido como consecuencia de fenómenos de reordenamiento genético (4).

De entre los pocos tipos de virus influenza tipo A capaces de superar la barrera entre las aves y el hombre, podemos distinguir, pues, dos tipos: 1) aquellos que han logrado adaptarse completamente a la especie humana, transmitiéndose en ésta de forma independiente de las aves, y 2) los que pueden transmitirse ocasionalmente desde las aves a los humanos, causando brotes esporádicos, pero no se transmiten eficazmente entre humanos. Mientras que los primeros quizá fueron en algún momento zoonóticos, pero ya no lo son, los segundos exhiben un comportamiento típicamente zoonótico. Los primeros son los causantes de las gripes pandémicas, que con el tiempo devienen en gripes estacionales. Como se señaló anteriormente, este proceso de adaptación puede durar décadas. Se ha podido determinar, por ejemplo, que el virus pandémico H1N1 de 2009 resultó de un triple reordenamiento que involucró a virus aviares, humanos, porcinos “clásicos” H1N1 y porcinos euroasiáticos. Los eventos clave que dieron origen a esta cepa pandémica tuvieron lugar probablemente entre 1990 y 2009 (7).  En cuanto a los segundos, los zoonóticos sensu stricto, se han documentado brotes esporádicos de gripe aviar en humanos desde 1996, si bien destaca por su importancia sanitaria el subtipo H5N1 de origen asiático que desde su “debut” en 1997 en Hong Kong viene produciendo casos esporádicos de infección humanos de una elevada virulencia y se ha expandido por amplias zonas de Asia y África, alcanzando Europa en 2004-2006 y generando una gran alarma social (2). El último informe de la Organización Mundial de la Salud (OMS) disponible (8) cifra en 650 el número de casos humanos infectados por virus influenza H5N1 declarados a esta organización desde 2003, de los que han fallecido 386. Las cifras ponen de manifiesto una elevada mortalidad (60%), pero afortunadamente el virus no se transmite eficazmente entre humanos, lo que, unido a las medidas sanitarias y de control implementadas, ha hecho que el número de casos anuales se haya ido reduciendo paulatinamente desde los 115 en 2006 hasta 39 en 2013. Este virus sigue circulando activamente en amplias zonas del sureste asiático, así como en Egipto.

Al subtipo H5N1 mencionado hay que sumar otro que ha surgido más recientemente: se trata del subtipo H7N9 de influenza aviar zoonótica que debutó en el Este de China en marzo de 2013 y que, según la OMS en la última actualización disponible sobre este brote (9), ha causado más de 450 casos confirmados, prácticamente todos en China (excepto uno en Malasia, probablemente importado desde China), ocasionando también una elevada mortalidad (170 muertes, 38%). Al igual que el anterior no se transmite eficazmente entre humanos, pero a diferencia de aquél, que es muy virulento tanto para aves domésticas como silvestres, este no posee elevada patogenicidad para las aves, en las cuales la infección suele pasar desapercibida, lo que hace más difícil su seguimiento y control.

El carácter zoonótico de algunos virus de la gripe aviar es motivo de preocupación por el riesgo que supone para la aparición de cepas pandémicas con graves consecuencias para la salud pública. Desde 2004, la alerta sanitaria surgida alrededor de la expansión del subtipo H5N1 supuso un punto de inflexión que motivó un mayor nivel de concienciación y alerta ante el surgimiento de una posible nueva gripe pandémica.  Ésta apareció de forma inesperada en Norteamérica en 2009, a partir de un subtipo H1N1 con componentes porcinos, humanos y aviares. La forma en que se efectuó el seguimiento de esta nueva gripe pandémica significó un hito en la historia de las enfermedades infecciosas, pues fue posible seguir su evolución prácticamente en tiempo real, algo inimaginable tan solo unos pocos años antes. A pesar de los enormes avances en este campo en los últimos años (4), aún no conocemos bien los detalles acerca de cómo surgen los virus gripales pandémicos. En cuanto a los actuales virus de gripe aviar causantes de zoonosis, aún se desconoce en gran medida cual es el riesgo de que desencadenen una nueva gripe pandémica, y la forma en que podrían hacerlo. Numerosos estudios en marcha se esfuerzan hoy por descifrar los interrogantes en torno a estas cuestiones de enorme relevancia y repercusión en salud pública.

Arbovirus aviares y zoonosis

Como ya se señaló en la introducción, existen dos grupos de arbovirus zoonóticos con reservorio aviar: uno pertenece a la familia Flaviviridae, género Flavivirus, y el otro a la familia Togaviridae, género Alphavirus. Entre los primeros se cuenta un numeroso conjunto de patógenos relevantes tanto en sanidad animal como en salud pública. Se trata principalmente de los flavivirus del serogrupo de la encefalitis japonesa, que comprende, además de al virus de la encefalitis japonesa (JEV) que da nombre al serogrupo, a los virus de la encefalitis de Saint Louis (SLEV), de la encefalitis del valle de Murray (MVEV), de la fiebre/encefalitis por virus West Nile (WNV) y al virus Usutu (USUV), a los que hay que añadir algunos otros flavivirus del serogrupo Ntaya, como los virus Rocío (ROCV) e Ilheus (ILHV), y algunos otros flavivirus menos conocidos y de menor importancia. El segundo grupo comprende ciertos alfavirus de importancia en salud pública, principalmente el virus Sindbis (SINV) y el virus de le encefalitis equina del Este (EEEV). Todos estos virus patógenos comparten ciertas características comunes, además de poseer como reservorio natural algunas especies concretas de aves silvestres y ser capaces de infectar y producir enfermedad en el ser humano:

  • Son transmitidos por picaduras de artrópodos, generalmente mosquitos.
  • Se mantienen en la naturaleza en un ciclo enzoótico o “rural” en el que el virus pasa de mosquito a ave y viceversa (Figura 4), siendo difícil detectar su actividad en esta fase.
  • En determinadas ocasiones, el ciclo enzoótico se desborda, produciendo brotes epidémicos en el hombre  y/o en los animales domésticos (a menudo, caballos) (Figura 4), causando patologías de severidad variable, desde signos leves y autolimitados como la fiebre hasta diversas manifestaciones neurológicas que pueden llegar a ser graves, sobre todo encefalitis y meningitis. Algunos de estos virus producen en humanos otro tipo de patologías, incluyendo afecciones cutáneas (exantema) y artralgias.
  • El hombre y los animales domésticos susceptibles pueden padecer la infección y desarrollar enfermedad a consecuencia de ella, pero no transmiten el virus. Es lo que se conoce como “hospedadores de fondo de saco” o accidentales (Figura 4), y se debe a que el virus no alcanza en estas especies el nivel de viremia suficiente como para infectar un mosquito al picarles.

Figura 4. Ciclo básico de transmisión típico de un arbovirus zoonótico con reservorio aviar, en este caso el virus West Nile (Fuente: elaboración propia).

Algunos de estos virus han protagonizado en tiempos recientes episodios de emergencia y/o reemergencia, es decir, han modificado su rango geográfico, afectando a regiones donde, o bien nunca antes se habían descrito o hacía mucho tiempo que no se detectaban Esta expansión ha tenido lugar en general desde zonas tropicales y subtropicales hacia las zonas templadas del Planeta. Las razones de esta expansión son aún inciertas, pero no es aventurado señalar que el fenómeno del calentamiento global y los cambios climáticos asociados pueden ser factores determinantes en este proceso, dada la estrecha relación entre el clima y el ciclo vital de muchos vectores, y, probablemente, aunque en menor medida, de los hospedadores aviares (10).

El caso más señalado de expansión geográfica reciente de uno de estos arbovirus zoonóticos es el del virus West Nile, que constituye uno de los ejemplos más evidentes de enfermedad emergente/re-emergente que se puedan citar actualmente. Otro ejemplo también muy significativo, especialmente si hablamos del entorno Euro-Mediterráneo, es el del virus Usutu, poco conocido fuera de su hábitat original en el África Subsahariana, hasta su emergencia reciente en Europa. El resto del artículo irá dedicado a estos dos ejemplos de virus aviares zoonóticos en plena expansión en la actualidad. En cuanto al resto de los flavivirus y alfavirus zoonóticos mencionados anteriormente, algunos tienden a ampliar su rango geográfico, como el virus de la encefalitis japonesa, con incursiones en el norte de Australia, y otros tienen un rango geográfico bastante estable, pero todos ellos tienen potencial para protagonizar episodios de emergencia en nuevos territorios, tal y como lo han hecho ya WNV y USUV.

Virus West Nile (WNV): Entre los flavivirus aviares zoonóticos emergentes destaca el virus West Nile (o WNV por sus iniciales en inglés), cuyo nombre suele traducirse al español como “Nilo Occidental”, “Oeste del Nilo”  o simplemente ” Nilo”[f]. Este virus afecta a un amplio rango de especies de vertebrados, entre ellas el hombre. El 80% de las personas que resultan infectadas  por WNV no manifiestan ningún síntoma ni afección clínica. En la mayor parte del 20% restante se produce una enfermedad leve conocida como “fiebre por WNV” que en la mayoría de los casos se limita a signos inespecíficos  como fiebre, mialgia y fatiga, a veces acompañados de exantema, vómitos, diarreas y linfadenopatía, que se resuelven sin complicaciones. Sin embargo, en unos pocos casos (se estima que uno de cada 150 casos clínicos) se desarrolla una enfermedad más grave (“enfermedad neuroinvasiva por WNV”), que afecta al sistema nervioso central, y que se manifiesta en forma de encefalitis, meningitis o parálisis. Entre el 4 y el 14% de los casos de enfermedad neuroinvasiva son mortales (revisión en (12)). El virus afecta también a otros vertebrados,  principalmente a caballos, en los que produce una enfermedad neurológica grave en un 10% de los casos clínicos, letal en 1/3 de los casos graves (revisión en (13)). Ni los equinos ni los humanos transmiten la enfermedad, al menos de forma natural (Figura 4).

El WNV se mantiene en la naturaleza en un ciclo enzoótico entre mosquitos, que constituyen los vectores, y aves, que constituyen los reservorios epidemiológicos. El WNV es considerado un generalista ecológico por la gran diversidad de hospedadores vertebrados que puede infectar, incluyendo no solo aves y mamíferos, sino también reptiles y anfibios. Sin embargo, solamente determinadas especies de aves pueden actuar como hospedadores competentes para la transmisión, constituyendo los auténticos reservorios epidemiológicos. Entre éstas, destacan algunas especies de Passeriformes, pero también aves silvestres pertenecientes a otras familias, existiendo diferencias notables a este respecto entre especies de aves pertenecientes a la misma familia (14). De igual modo, aunque el WNV es capaz de infectar a una gran variedad de artrópodos, incluyendo un amplio rango de mosquitos y garrapatas; sin embargo, solo determinadas especies de mosquitos actúan eficazmente como vectores competentes para la transmisión, entre ellas destacan diversas especies ornitofílicas del género Culex, ampliamente distribuidas por todo el mundo (15).

El que el virus West Nile circule en un territorio viene determinado básicamente por la presencia en el mismo de vectores y hospedadores competentes en suficiente número. En tal “sustrato”, compatible con la circulación del virus, éste prosperará si es introducido en la zona. La introducción puede ser natural (movimientos naturales -migratorios o no- de aves infectadas, o de mosquitos, que empujados por el viento pueden salvar distancias respetables) o mediada por las actividades humanas (por ejemplo, el comercio de animales exóticos, entre otras). En Europa circulan diferentes linajes genéticos del virus, pero los dos más importantes desde el punto de vista sanitario, los linajes 1 y 2, son compartidos con el pool de virus del África Subsahariana, y se cree que han llegado a Europa en diferentes eventos de introducción, probablemente a través de la migración de las aves. No obstante, estos eventos de introducción son raros e infrecuentes, como demuestran las relaciones filogenéticas existentes entre los distintas cepas de WNV aisladas en Europa, que revelan un número muy limitado de tipos genéticos: dos de linaje 1 (Euromediterráneo occidental e Israelo-Europeo oriental) circulando desde los años ’90 del siglo XX, y dos de linaje 2 (Centro-Sur Europeo y Ruso-Rumano), circulando y expandiéndose desde 2004, sugiriendo una dinámica de introducción ocasional, seguida de circulación local, endemización y dispersión a regiones vecinas (16).

El virus West Nile era considerado un virus tropical africano de poca importancia hasta hace poco. Fue descrito por primera vez en Uganda (distrito de West Nile, de ahí su nombre) en 1937.  En los años ’50 del siglo XX se encontró en Egipto y en Oriente Medio, donde se describieron los primeros casos de enfermedad neuroinvasiva en humanos. Tuvo apariciones esporádicas a lo largo de la cuenca del Mediterráneo en los años ’60 y ’70, causando algunos brotes de enfermedad en caballos. Tras una ausencia de dos décadas, a finales de los ’90 del siglo XX volvió a aparecer en el Mediterráneo y en Europa del Este, y desde entonces no ha parado de aumentar su incidencia y rango geográfico (13).

Pero si en Europa el virus West Nile se ha expandido de forma notable en los últimos 15 años, lo que ha ocurrido aproximadamente al mismo tiempo al otro lado del Atlántico ha sido una expansión sin precedentes: desde su introducción en Nueva York en 1999, y en tan solo 4 años, el virus invadió Norteamérica de costa a costa y de México a Canadá, causando una epidemia de enormes proporciones, que afectó severamente a miles de personas y causó estragos igualmente en equinos y aves. A diferencia de Europa, en América las aves si resultaron muy afectadas, quizá porque las especies de aves americanas sean más susceptibles a enfermar por este virus de lo que lo son sus homólogas europeas. Tan sólo en Estados Unidos, el virus ha causado hasta hoy alrededor de 40.000 casos clínicos diagnosticados en humanos, de los que más de 1.600 han sido mortales (17). El virus, que ya es considerado endémico en Norteamérica, ha proseguido su expansión hacia América del Sur, donde llegó a alcanzar territorio argentino en 2006. Está presente igualmente en Centroamérica y el Caribe, donde ha llegado igualmente desde el Norte, si bien la incidencia de la enfermedad disminuye cuanto más se desciende en latitud, un fenómeno aún no explicado satisfactoriamente.

El virus West Nile no solo se ha dispersado muy eficazmente por Europa y América, sino que ha alcanzado una distribución mundial, estando presente hoy día en todos los continentes habitados de la Tierra. Las claves del éxito reciente de este virus podrían residir en su ya mencionado carácter “generalista”, capaz de infectar a un gran número de especies de vertebrados y prosperar eficazmente en muchas de ellas, así como ser transmitido por una importante variedad de mosquitos, de amplia distribución en el mundo. Aunque el papel del cambio climático en esta expansión es aún incierto, y sin duda han influido otros factores, se especula que el calentamiento global ha podido “empujar” a este virus hacia zonas más templadas del Planeta.

Virus Usutu: En 2001, durante un episodio de mortalidad masiva de mirlos (Turdus merula) en los parques de Viena (Austria) se identificó un flavivirus hasta el momento desconocido en Europa, denominado virus Usutu. Se trata de un virus muy similar al virus West Nile desde el punto de vista genético y antigénico. Las similitudes también incluyen su origen africano (el virus Usutu fue descrito por primera vez en Sudáfrica en 1959, y ha sido detectado en humanos y en mosquitos en diversos países del África Subsahariana antes de su aparición en Europa), y su ciclo de transmisión, con reservorios aviares y mosquitos como vectores. El virus Usutu es un patógeno importante para determinadas especies de aves susceptibles, entre ellas los mirlos.  El ser humano puede resultar infectado, si bien este es un fenómeno más raro que en el caso del virus West Nile. La infección es a menudo asintomática, aunque en ocasiones puede causar signos leves (fiebre, exantema). En algunos casos se ha producido una infección más severa, en pacientes con diversas patologías de base (18), aunque muy recientemente se han descrito infecciones virulentas en personas sin patologías previas conocidas, en un brote de enfermedad neuroinvasiva ocurrido en Croacia en 2013, que coincidió con un brote por WNV (19). Desde el año 2001 en que alcanzó Centroeuropa[g], el virus no ha cesado de expandir su rango geográfico en este continente, habiendo sido detectada su presencia en Austria, Hungría, Suíza, Italia, España y más recientemente, en Alemania. Es notable el hecho de que a menudo co-circula con WNV, lo cual supone dificultades en cuanto al diagnóstico diferencial, pues existe reactividad cruzada entre ambos virus en las pruebas serológicas disponibles (21). El virus Usutu no ha sido detectado por el momento fuera de África, Europa y la zona mediterránea.

NOTAS

[a] En este artículo usaremos indistintamente las denominaciones influenza y gripe, equivalentes en español (3)

[b]Existen virus patógenos aviares relevantes en las familias Circoviridae; Coronaviridae; Flaviviridae; Herpesviridae; Orthomyxoviridae; Paramyxoviridae; Parvoviridae; Picornaviridae; Polyomaviridae, Poxviridae; Reoviridae; Retroviridae; y Togaviridae, principalmente.

[c] Recientemente se han identificado variantes de virus de la influenza aviar en pingüinos antárticos, ampliando aún más el rango geográfico conocido de estos virus.

[d] Dieciocho HA y once NA, si incluimos los dos nuevos subtipos de influenza A encontrados muy recientemente, uno en pingüinos antárticos (mencionado en la nota al pie anterior) y el otro en murciélagos. Éste último no se ha encontrado en aves, por el momento.

[e] A éstos hay que añadir H10, puesto que recientemente (2013) fue notificado el primer caso –y hasta ahora único- de una persona que adquirió una infección por H10N8, probablemente por contacto con aves de corral, y que murió a consecuencia de la neumonía severa provocada por la infección.

[f] Ninguna de estas traducciones es correcta, como ya se discutió en otro lugar (véase referencia (11)).

[g] Retrospectivamente se ha sabido que el virus Usutu ya circuló  -y fue responsable de brotes de mortalidad en aves silvestres- en el Norte de Italia en 1996 (20).

Referencias

  1. Jiménez-Clavero, MA. 2010. Influenza, gripe, «gripe española», «gripe porcina» y otras controversias en la denominación de los virus: El lado «políticamente incorrecto» de la virología. Enfermedades Infecciosas y Microbiología Clínica 11/2010; 28(9):662–663.
  2. González González, G. 2006. La influenza aviar. Insistencia mediática, alarma social y efectos socio-económicos. En: Monografías de la Real Academia Nacional de Farmacia, Monografía XXI: Influenza aviar y gripe humana de origen aviario. Cap 2. Editor: Bernabé Sanz Pérez. Enlace: http://www.analesranf.com/index.php/mono/article/viewFile/594/611.
  3. Chen S, Cheng A, Wang M. Innate sensing of viruses by pattern recognition receptors in birds.Vet Res. 2013 Sep 9;44:82. doi: 10.1186/1297-9716-44-82. Review.
  4. Medina R, García-Sastre A. 2011. Influenza A viruses: new research developments. Nature Reviewes Microbiology 9:590-603 doi:10.1038/nrmicro2613.
  5. Chen, R. y Holmes, EC. 2006. Avian influenza virus exhibits rapid evolutionary dynamics. Mol Biol Evol. 2006 Dec;23(12):2336-41. DOI: 10.1093/molbev/msl102.
  6. Casadevall A, Imperiale MJ. Risks and benefits of gain-of-function experiments with pathogens of pandemic potential, such as influenza virus: a call for a science-based discussion. MBio. 2014 Aug 1;5(4):e01730-14. doi: 10.1128/mBio.01730-14.
  7. Trifonov, V., Khiabanian H, Rabadan R. 2009. Geographic Dependence, Surveillance, and Origins of the 2009 Influenza A (H1N1) Virus. N Engl J Med 361:115-119 doi: 10.1056/NEJMp0904572.
  8. WHO. 2014. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003-2014. Enlace: http://www.who.int/influenza/human_animal_interface/EN_GIP_20140124CumulativeNumberH5N1cases.pdf (Acceso: 22 de agosto de 2014).
  9. WHO. 2014. Confirmed human cases of avian influenza A(H7N9) reported to WHO. Enlace: http://www.who.int/influenza/human_animal_interface/influenza_h7n9/18_reportwebh7n9number_20140714.pdf?ua=1 (Acceso: 22 de agosto de 2014).
  10. Jiménez-Clavero, MA. 2012. Animal viral diseases and global change: bluetongue and West Nile fever as paradigms. Frontiers in Genetics 06/2012; 3. DOI: 10.3389/fgene.2012.00105-3.
  11. Jiménez-Clavero, MA. 2009. West Nile o Nilo Occidental. Enfermedades Infecciosas y Microbiología Clínica 05/2009; 27(5):308.
  12. Pérez Ruiz, M., Sanbonmatsu Gámez, S., Jiménez Clavero, MA.: Infección por virus West Nile. Enfermedades Infecciosas y Microbiología Clínica 01/2011; 29(Supl 5-29 (Supl 5)):21-26.
  13. Sotelo, E., Fernández-Pinero, J., Jiménez-Clavero, MA.: La fiebre/encefalitis por virus West Nile: reemergencia en Europa y situación en España. Enfermedades Infecciosas y Microbiología Clínica 11/2011; 30(2):75-83.
  14. Pérez-Ramírez E, Llorente F, Jiménez-Clavero MA. Experimental Infections of Wild Birds with West Nile Virus. Viruses 2014, 6(2), 752-781; DOI:10.3390/v6020752.
  15. Engler O., Savini G.,, Papa A.,, Figuerola J., Groschup, MH., Kampen H., Medlock J., Vaux A.,  Wilson AJ., Werner D., Jöst H., Goffredo M., Capelli G., Federici V., Tonolla M., Patocchi N., Flacio E., Portmann J., Rossi-Pedruzzi A., Mourelatos S., Ruiz S., Vázquez A., Calzolari M., Bonilauri P., Dottori M., Schaffner F., Mathis A., Johnson N. 2013. European Surveillance for West Nile Virus in Mosquito Populations. Int. J. Environ. Res. Public Health 2013, 10, 4869-4895; DOI:10.3390/ijerph10104869
  16. Sotelo E, Fernández-Pinero J, Llorente F, Vázquez A, Moreno A, Agüero M, Cordioli P, Tenorio A, Jiménez-Clavero MÁ. 2010. Phylogenetic relationships of Western Mediterranean West Nile virus strains (1996-2010) using full-length genome sequences: single or multiple introductions? J Gen Virol. 2011 Nov;92(Pt 11):2512-22. DOI: 10.1099/vir.0.033829-0.
  17. CDC 2014. West Nile virus disease cases and deaths reported to CDC by year and clinical presentation, 1999-2013. Enlace: http://www.cdc.gov/westnile/resources/pdfs/cummulative/99_2013_CasesAndDeathsClinicalPresentationHumanCases.pdf (Acceso: 26 de agosto de 2014).
  18. Vazquez A., Jimenez-Clavero MA., Franco L., Donoso-Mantke O.,, Sambri V.,Niedrig M., Zeller , Tenorio A. 2011. Usutu virus: potential risk of human disease in Europe. Eurosurveillance 01/2011; 16(31).
  19. Vilibic-Cavlek T1, Kaic B, Barbic L, Pem-Novosel I, Slavic-Vrzic V, Lesnikar V, Kurecic-Filipovic S, Babic-Erceg A, Listes E, Stevanovic V, Gjenero-Margan I, Savini G. 2014.First evidence of simultaneous occurrence of West Nile virus and Usutu virus neuroinvasive disease in humans in Croatia during the 2013 outbreak. Infection. 42(4):689-95. DOI: 10.1007/s15010-014-0625-1.
  20. Weissenböck H, Bakonyi T, Rossi G, Mani P, Nowotny N. 2013. Usutu virus, Italy, 1996. Emerg Infect Dis. 19(2):274-7. DOI: 10.3201/eid1902.121191.
  21. Beck C, Jimenez-Clavero MA, Leblond A, Durand B, Nowotny N, Leparc-Goffart I, Zientara S, Jourdain E, Lecollinet S. 2013. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. Int J Environ Res Public Health. 2013 10(11):6049-83. DOI: 10.3390/ijerph10116049.
Etiquetas: , , , , , , , , , ,
Categorias: General

Nuevo número de la revista “Virología”: Zoonosis víricas. “Un mundo, una salud”

 

Acaba de salir el nuevo número de la revista Virología, que es la revista de la Sociedad Española de Virología (SEV). Está disponible online (¡gratis!) sólo con pinchar en el siguiente enlace:

Zoonosis víricas. “Un mundo, una salud”.

Vol. 17 nº1 (2014)

 

Los números de esta revista se hacen esperar (un año desde que se publicó el nº anterior) pero la verdad es que están muy bien, por lo que merece la pena esperar un poco. En esta ocasión además creo que se han esmerado especialmente, incluso a nivel gráfico, con una portada “3D” de un diseño notable para mi gusto, en la que destaca una figura central simbolizando los tres aspectos del lema del nuevo número: “Un mundo, una salud” reunidos en una arquetípica partícula vírica “tripartita” que a su vez podría simbolizar el planeta, suspendido en el espacio.

 

Me agrada mucho que hayan dedicado un número completo de la revista al mundo de las zoonosis víricas, por proximidad con la temática de mi trabajo habitual, pero sobre todo porque a menudo este tema ha sido el “hermano pobre” en el amplio campo de la virología, y sin embargo, es cada día más aceptado por evidente que en la Naturaleza no hay compartimentos estancos, y menos en el mundo de las enfermedades infecciosas, donde los patógenos, sean virus, bacterias o parásitos, transitan entre especies, y la especie humana en este sentido es una más. El espíritu de “Un mundo, una salud” es inmanente en este blog dedicado a los virus emergentes y el cambio global, Ya dediqué anteriormente un post a este asunto, el cual comenzaba así:

El niño/roedores/sindrome pulmonar por hantavirus; construcción de embalses/mosquitos/fiebre hemorrágica del Valle del Rift; comercio de animales silvestres/roedores/viruela de los monos; calentamiento global/jejenes/lengua azul; producción avícola/aves silvestres/gripe aviar; nuevos regadíos/mosquitos/aves/encefalitis por flavivirus…

No me he vuelto loco. Solo son ejemplos de lo imbricadas que están tres áreas de conocimiento que tradicionalmente se han desarrollado por separado y a menudo de espaldas unas de otras: la sanidad humana,  la sanidad animal y el medio ambiente. En negrita se destacan determinadas enfermedades causadas por infecciones víricas, que afectan al hombre y/o a los animales, y que a menudo se mantienen en la naturaleza en especies de animales silvestres que actúan como reservorio. Roedores, murciélagos, aves, son frecuentemente reservorios de enfermedades que afectan al hombre (zoonosis) y/o a los animales domésticos (“enfermedades compartidas“). Algunas de ellas, además, son transmitidas por picaduras de artrópodos. Está claro que el conocimiento de estas enfermedades ha de verse potenciado por la interacción entre especialistas en diversas disciplinas, incluyendo profesionales de la medicina humana y veterinaria, epidemiología, virología, entomología, zoología, genética, inmunología, ecología, climatología, etc.

Así pues, el concepto “Un mundo, una salud” trata de integrar las diversas disciplinas relevantes en torno a nuestra salud, que está estrechamente relacionada con la sanidad animal y la salud ambiental. La realidad nos ofrece un ejemplo excelente de inmensa actualidad: la emergencia de enfermedad por virus ebola (EVE) en África Occidental. En un post anterior ya vimos que la actual epidemia de EVE en África Occidental es una genuina emergencia sanitaria que tiene como origen un evento singular de transmisión desde un reservorio animal al ser humano, y que probablemente se ha visto facilitado por circunstancias como la invasión del hábitat de dichos reservorios silvestres en la selva tropical con el fin de explotar sus recursos minerales (ver enlace 1, enlace 2, enlace 3), y de todo el desarrollo necesario para tal fin que lleva aparejado, como por ejemplo la construcción de vías de comunicación al corazón mismo de la selva. Como pone de manifiesto este ejemplo, la salud humana, animal y el medio ambiente forman una imbricada madeja de hilos difíciles de devanar.

Hablando de hilos, volvamos al nuestro, que es el último número de la revista Virología, que no tiene dsperdicio.

Comienza éste con un artículo de la serie “Sin ciencia no hay futuro” dedicada a exponer la difícil situación por la que pasa la investigación científica en España, de la cual la investigación sobre los virus no es sino un exponente más. El artículo, titulado “La descapitalización de la ciencia en España” es una amarga reflexión sobre el panorama al que se enfrentan los jóvenes científicos en España, obligados a emigrar, muchos de ellos tras haber regresado con contratos de “reincorporación”. Lo cuenta muy bien uno de estos investigadores, Javier Buceta. Léanlo porque es muy revelador de lo que está ocurriendo con la ciencia en España.

Continua con la sección “Historia de la virología“, coordinada por Rafael Nájera, con un interesante artículo escrito por el propio coordinador titulado “VIH: Reservorio viral latente y política” y completado con noticias relacionadas con esta sección.

A esta sección siguen dos artículos de revisión, a tono con la temática elegida para este número dedicado a las zoonosis víricas: el primero, escrito por José Manuel Echevarria,  titulado “Los hepadnavirus de murciélagos y el origen del virus de la hepatitis B“, y el otro, escrito por el que suscribe, titulado “Las aves como reservorio de virus zoonóticos“.

Las enfermedades víricas tienen una faceta social que es la que trata la sección “Virología y sociedad“. En esta ocasión inician la sección Rosario Sabariegos y Silvia Ortiz Simarro con un interesante artículo “El trópico, el dengue y el mundial de fútbol en el que se preguntan acerca del orden de prioridades en temas peliagudos como son las enfermedades tropicales en relación con determinados eventos internacionales como el mundial de fútbol. Dos artículos de esta misma sección muestran sendas aproximaciones desde el arte a ciertas enfermedades víricas. El primero desde la pintura y el segundo desde la poesía. En el primer artículo, (titulado “Tarjeta roja“) Elvira Fiallo-Olivé y Jesús Navas-Castillo comentan las vicisitudes de la vacunación frente a la fiebre amarilla utilizando el cuadro titulado “Un episodio de fiebre amarilla en Buenos Aires” (Juan Manuel Blanes, c. 1871) para ilustrar el impacto social que tuvieron las epidemias de esta enfermedad en el pasado, y que aún hoy día siguen siendo una importante amenaza para la salud pública en muchos países en vías de desarrollo en África y América del Sur. El segundo artículo, Carlos Briones Llorente presenta en su sección habitual “La vida y las palabras”  lo que promete ser la primera entrega de una serie de artículos sobre las relaciones entre literatura y SIDA, bajo el título “El virus de la inmunodeficiencia humana: de la zoonosis a la literatura (I)“, donde, tras ofrecer una panorámica de lo que supuso el descubrimiento del virus de inmunodeficiencia humana (VIH), nos muestra en qué contexto histórico y cultural tuvo lugar ese descubrimiento y cómo tuvo su impacto en las artes, deteniéndose en un poema de Cristina Peri Rossi titulado “Un virus llamado SIDA“. El autor recuerda importantes nombres de la literatura que sucumbieron a causa de esta epidemia.

En la habitual sección “Entrevista a un virólogo” el elegido para la entrevista es Antonio Tenorio, del Instituto de Salud Carlos III y el entrevistador el que suscribe. Se trata de una entrevista muy en consonancia con la temática del número de la revista, pues Antonio es pionero en aplicar el concepto “Un mundo, una salud” en diversos proyectos y actividades de salud pública a lo largo de su carrera. A los lectores les sorprenderán algunos de los puntos de vista expresados por el entrevistado, que según se define él mismo no es investigador sino  “un virólogo de salud pública”, Su defensa de la cooperación entre grupos, la formación de redes de colaboración, etc, suenan como aire fresco frente a un discurso oficial dominado por el asfixiante soniquete de la competitividad y la excelencia mal entendidas. Por su interés para los lectores de este blog y con permiso de la revista, reproduciré esta entrevista en un próximo post.

Completan este número las habituales secciones “Noticias de actualidad” con una serie de artículos comentando noticias recientes, sobre ébola y otras fiebres hemorrágicas, rabia, robovirus (virus transmitidos por roedores) y geminivirus de plantas, escritos por especialistas en los respectivos campos), “Tesis doctorales” (breves reseñas de las tesis presentadas durante el último año en el área de virología en España), “Congresos y reuniones científicas”  y “Jornadas, cursos y premios” (reseñas de reuniones,  congresos, jornadas, etc relacionados con la virología celebrados durante el año pasado), “Libros recomendados” y “Comentarios de artículos” seleccionados por especialistas por su interés en las diversas áreas de la virología, incluyendo esta vez tres contribuciones al mundo de los virus de plantas y otras tres al de los virus de animales.

En resumen, un más que interesante y muy recomendable número monográfico de la revista Virología dedicado a las zoonosis víricas. Todo un lujo.

Y un lujo también para mi haber podido colaborar en él, lo que agradezco a sus editores, especialmente a Fernando Rodríguez y a Ana Doménech.

Etiquetas: , , , , , , , , , , , , , , ,
Categorias: Cambio global, General

La “gran peste” (Huey Cocolitztli) del siglo XVI en México y el nuevo arenavirus Ocozocoautla de Espinosa ¿relacionados?

En 2012 publiqué en este blog una entrada titulada  “Huey cocoliztli” en el Mexico del siglo XVI:  ¿una enfermedad emergente del pasado? que ha mereció el primer premio de comunicación científica “Blogs mi+d”. Aprovecho la ocasión para agradecer el premio al jurado y a las entidades convocantes, la Fundación madri+d y la Dirección General de Universidades e Investigación de la Comunidad de Madrid. A través del siguiente enlace puede accederse a una reseña del premio y a una entrevista.

En esta ocasión celebraremos el premio rememorando el tema tratado en aquél post. invitando a los lectores a conocer un nuevo virus hallado en México, concretamente en el Estado de Chiapas, descrito por primera vez hace un año, y que, como es costumbre, recibe el nombre de la localidad de donde procedía la muestra que permitió su identificación, la ciudad de  Ocozocoautla de Espinosa.

Este virus podría tener alguna relación con la enfermedad del Huey Cocoliztli, o gran peste, que asoló México en el siglo XVI, que se describió en el post mencionado antes. También podría no tener ninguna. La ciencia es así: busca pruebas y explicaciones, y lo que no cuadra, se rechaza. De momento los hechos son los siguientes:

En el siglo XVI en México y Centroamérica (la “Nueva España” de aquel entonces)  tuvieron lugar unas epidemias devastadoras de una enfermedad hemorrágica que fue denominada “Huey cocoliztli“, o gran peste en idioma nahuatl. Algunos autores, basándose en descripciones fidedignas de la enfermedad, su sintomatología clínica, y las circunstancias en las que se produjeron aquellas epidemias, han propuesto que es posible que su causa fuera la infección por un virus hemorrágico (1). Pero ¿cual de ellos? Razonando por descarte, al parecer los mejores candidatos al puesto de causantes del huey cocoliztli son los miembros de la familia de los Arenavirus, y en concreto una rama de éstos que son los Arenavirus americanos del serocomplejo Tacaribe. Se conocen unos cuantos dentro de este grupo capaces de causar brotes de fiebre hemorrágica con una alta mortalidad. Todos ellos son transmitidos por contacto con roedores, dándose la circunstancia de que existe una  alta especialización en estos virus en relación con la especie de roedor que emplean como reservorio. Ello implica que la distribución geográfica de estos virus coincide con la distribución geográfica de la especie de roedor que actúa de reservorio epidemiológico. Se han identificado representantes de este grupo en los Estados Unidos (los virus Whitewater arroyo, Bear canyon y Tamiami), en Trinidad (virus Tacaribe), en Bolivia (virus Chaparé y Machupo), en Venezuela (virus Guaranito), en Argentina (virus Junin) y en Brasil (virus Sabiá). Los lectores interesados pueden encontrar más detalles de estos virus, junto con un mapa de su distribución y  sus principales especies reservorio en el post que dedicamos al Huey cocolitzli el año pasado.

En todo este asunto había una ausencia importante: si el causante del Huey cocoliztli fue un arenavirus del serocomplejo Tacaribe  ¿cómo es que no se ha encontrado ninguno en el actual territorio de México y América Central, escenario de aquella terrible plaga cuatro siglos y pico atrás? Como ocurre a menudo en el mundo de la virología, es cuestión de buscar y hacerlo bien. A ello se pusieron diversos grupos de investigación. En 2009 un grupo de investigación mexicano publicó un estudio que describía la presencia de anticuerpos específicos frente a virus del serocomplejo Tacaribe en roedores capturados en Mexico: concretamente encontraron 3 ratones ciervo (Peromyscus maniculatus) seropositivos de un total de 12 examinados, todos ellos precedentes de Ocozocoautla de Espinosa, Estado de Chiapas (2). Muestras de riñón (se sabe que los arenavirus producen infecciones persistentes a nivel renal en sus hospedadores) de estos 3 ratones y de otros  más de la zona, llegaron a manos de otro grupo de investigadores de la Universidad de Texas en Galveston, quienes trataron de aislar el virus a partir de ellas, y si bien no lo consiguieron, pudieron obtener secuencias genéticas víricas lo suficientemente largas como para permitir la identificación de los virus presentes en aquellos ratones y asignarlos, mediante análisis filogenéticos, a uno de los 4 genotipos de que se compone el serogrupo Tacaribe, denominado grupo “B”, y dentro de éste, al subgrupo compuesto, además de por el virus Ocozocoautla de Espinosa,   por los virus (por orden de similitud) Tacaribe, Junin y Machupo (3).

Así pues, ya tenemos un mapa más completo de los Arenavirus americanos, con una especie nueva en el Sur de México. Bueno, lo de la especie requerirá algunos estudios más, porque de momento solo tenemos algunas secuencias genéticas parciales del virus, aún insuficientes para dar carta de naturaleza a una nueva especie vírica, pero todo llegará.

Ya tenemos  identificado el virus, con un nombre al menos provisional (de momento parece que los habitantes de Ocozocoautla de Espinosa no se han quejado mucho). Ahora bien ¿cual es su importancia clínica? Por un lado, parece que en el Estado de Chiapas se han registrado brotes de cierta importancia de enfermedad hemorrágica en humanos, destacando una epidemia de fiebre hemorrágica muy grave que tuvo lugar en 1967, y en sueros de personas convalecientes se identificaron anticuerpos frente a virus del serocomplejo Tacaribe. Por otro lado, en ese mismo Estado se producen de forma endémica casos de dengue hemorrágico, cuya forma clínica puede confundirse fácilmente con una fiebre hemorrágica por arenavirus, lo cual podría haber motivado que los brotes por arenavirus pasen desapercibidos en la zona. El dengue hemorrágico se comenzó a expandir por las zonas tropicales y subtropicales de América en las décadas de 1960-70.

Por último ¿fue el virus Ocozocoautla de Espinosa -o un ancestro de éste- el causante del huey cocoliztli? Probablemente nunca lo sabremos.  Ya señalamos en un post anterior que es difícil hacer extrapolaciones sobre epidemias del pasado con lo que sabemos de los patógenos actuales. En particular es difícil de explicar cómo pudo transmitirse tan masivamente aquella peste entre la población, cuando los brotes que conocemos de fiebres hemorrágicas por arenavirus tienen muy poca capacidad de difusión (afortunadamente) limitándose a unos pocos, tal vez decenas de casos clínicos cada brote. También es extraño cómo después de aquello la enfermedad pudo “borrarse del mapa”, aunque esto puede que no sea exactamente así ya que podrían haberse seguido produciendo brotes de fiebres hemorrágicas como el ya mencionado de 1967, que pudieron no ser diagnosticados correctamente o no alcanzar demasiada repercusión fuera de aquellas tierras. Respecto a la transmisión masiva, hay que recordar que en el surgimiento de brotes epidémicos de fiebres hemorrágicas por arenavirus influyen de forma muy especial factores tanto ecológicos como socio-económicos, y en particular el desarrollo de actividades agrícolas en zonas deforestadas ha precedido a menudo a brotes de enfermedades producidas por estos virus. Cambios en la agricultura suponen a menudo cambios en la disponibilidad de alimento para los roedores, que a veces pueden desembocar en eclosiones poblacionales de éstos, facilitando el contacto con el hombre. Estos factores, en particular teniendo en cuenta el peculiar sistema de Encomiendas implantado por los Españoles al llegar a las Indias, podrían haber influido en la desastrosa incidencia de la enfermedad del huey cocoliztli en el siglo XVI.

Referencias

(1) Acuna-Soto R, Stahle DW, Cleaveland MK, Therrell MD. Megadrought and megadeath in 16th century Mexico. Emerg Infect Dis. 2002 Apr;8(4):360-2.  (http://wwwnc.cdc.gov/eid/article/8/4/01-0175_article.htm),

(2) Milazzo ML, Barragán-Gomez A, Hanson JD, Estrada-Franco JG, Arellano E, González-Cózatl FX, Antibodies to Tacaribe serocomplex viruses (family Arenaviridae, genusArenavirus) in cricetid rodents from New Mexico, Texas, and Mexico. Vector Borne Zoonotic Dis. 2010;10:629–37. doi:10.1089/vbz.2009.0206.

(3) Cajimat MNB, Milazzo ML, Bradley RD, Fulhorst CF. Ocozocoautla de Espinosa virus and hemorrhagic fever, Mexico. Emerg Infect Dis [serial on the Internet]. 2012 Mar [date cited]. http://dx.doi.org/10.3201/eid1803.111602.

 


Etiquetas: , , , , , ,
Categorias: Nuevos virus

La gripe y sus virus (I)

Dado que la alerta sanitaria sobre la gripe aviar H7N9 desencadenada en China recientemente (ver post anterior) va a atraer la atención del público y los medios durante un tiempo, en este post vamos a intentar resumir lo que hay que saber sobre los virus de la gripe, para proporcionar a los lectores la información básica que permita “digerir” correctamente la presumible avalancha de noticias sobre el tema en los próximos meses.

Como el tema es algo extenso, lo dividiremos en dos partes. La primera, que es la que va a continuación, describe los tipos de virus de la gripe, su diversidad genética y antigénica, y su evolución. En la segunda parte se hablará de cómo seleccionan los virus de la gripe las especies animales a las que infectan, qué hacen para atravesar la “barrera de especies”, y cómo es que algunos virus de la gripe adquieren una mayor virulencia. Al final se incluye un glosario con una definición de términos técnicos empleados a lo largo de estas explicaciones, para los lectores que no estén familiarizados con la jerga. 

Tipos de virus de la gripe.

Los virus de la gripe, o influenza, que tanto da (1), pertenecen a la familia Orthomyxoviridae, que son un grupo de virus con envoltura lipídica y genoma dividido constituido por ocho segmentos de ARN monocatenario (ver Figura 1). Existen tres géneros dentro de esta familia, los influenzavirus A, B y C, siendo el “A” el más importante desde el punto de vista sanitario (2). Los influenzavirus A son los únicos responsables de la gripe aviar, además de ser los agentes causales de la gripe común en humanos, y de las gripes porcina y equina. El tipo B se considera restringido a humanos y el C se ha aislado en el hombre y en el cerdo. En este post nos ceñiremos al género más relevante, el de los influenzavirus de tipo A.

Figura 1. Izquierda: fotomicrografía electrónica de virus de la gripe. Derecha: esquema de uno de estos virus, donde se destacan las glicoproteínas de superficie, hemaglutinina (color morado) y neuraminidasa (color naranja) unidas a una membrana lipídica que rodea la partícula vírica en cuyo interior se alojan ocho segmentos de ARN que constituyen el genoma del virus Fuente: Virology blog: http://www.virology.ws/2009/09/22/the-a-b-and-c-of-influenza-virus/

Subtipos antigénicos.

Los virus de la gripe exhiben en su superficie dos tipos de glicoproteínas mayoritarias insertadas en su envoltura lipídica, conocidas como hemaglutinina (HA) y neuraminidasa (NA) (Figura 1) en las que residen tanto la unión a receptores celulares como los sitios principales de reconocimiento antigénico por parte del sistema inmunitario del hospedador. Los subtipos antigénicos de los virus influenza (o gripe) tipo A vienen determinados según la particular composición de HA y NA que exhiben en la superficie. Se conocen 16 subtipos diferentes de HA (H1-H16) y 9 de NA (N1-N9). Estas dos glicoproteínas víricas se pueden presentar en cualquier combinación, lo que da lugar a 144 combinaciones o subtipos antigénicos de virus influenza, distinguibles serológicamente. Cada subtipo tiene sólo una clase de antígeno HA y una clase de antígeno NA. Se denominan HxNy siendo x e y el subtipo de HA y NA, respectivamente, que poseen. Por ejemplo, H5N1 designa el virus influenza A que posee HA del subtipo H5 y NA del subtipo N1. Conviene recalcar que dentro de cada subtipo existe una considerable variabilidad genética, antigénica y fenotípica, como veremos a continuación.

Los “otros” segmentos de ARN de los virus gripales les confieren una extensa diversidad genética.

Como hemos dicho antes, el genoma de los virus influenza tipo A está dividido en ocho segmentos (moléculas) de ARN, cada uno de los cuales codifica una o dos proteínas distintas del virus. Así, tenemos que además de las glicoproteínas de superficie HA y NA que ya hemos mencionado, el virus posee otras 9 proteínas, conocidas como PB1, PB1-F2, PB2, PA, M1, M2, NS1, NS2 y NP, cada una de ellas necesaria para distintas funciones relacionadas con el ciclo biológico del virus (que no vamos a detallar), y codificadas en distintos segmentos del ARN vírico (Figura 2). Como estas proteínas también varían entre cepas del virus, resulta que al final la variabilidad genética de estos virus es enorme. Digamos que a los 144 posibles subtipos antigénicos mencionados en el apartado anterior habría que añadir la variabilidad aportada por cada una de las variantes genéticas conocidas de las 8 proteínas víricas. Para hacernos una idea, si quisiéramos tipificar completamente una cepa de virus de gripe, a la denominación “antigénica” “HxNy” habría que añadir la información correspondiente a la variante de cada proteína vírica: “HxNyPB1zPB1-F2aPB2bPAcM1dM2eNS1fNS2gNPh” donde x, y, z, a, b, c, d, e, f, g y h serían las variantes concretas de cada una de las proteínas presentes en la cepa, que aunque no sean tan variables como la HA y la NA, también varían. Realmente no existe una nomenclatura de este tipo, pero sí que se tipifican determinadas cepas por medio de la secuenciación completa de todos los ARN que componen su genoma. Ya veremos en el siguiente post para qué sirve todo esto.

 

Figura 2. Esquema de la composición de los virus de la gripe tipo A. Se detallan a la derecha las diferentes proteínas víricas codificadas en el genoma de estos virus. A la izquierda se representa esquemáticamente un virión (partícula vírica) mostrando la localización de aquellas proteínas que están presentes en el mismo (NOTA: algunas proteínas víricas solamente se expresan durante una determinada fase de la infección, en la célula infectada, y no se encuentran en la partícula vírica) (Fuente: Wikimedia Commons).

Evolución de los virus de gripe.

¿De dónde surge toda esa variabilidad? Pues de la mutación y la selección que ocurre a nivel de cada segmento de ARN. Los virus con genoma de ARN poseen una alta tasa de mutación porque las enzimas que copian su genoma (ARN-polimerasas) carecen de actividad correctora de errores en la copia, de modo que se van introduciendo al azar errores en la secuencia de nucleótidos de la hebra de ARN. Las hebras resultantes de estas copias no del todo exactas forman parte de la nueva generación de virus que emerge de la célula infectada, y están sujetos a un proceso de selección natural (3). El medio actúa de filtro permitiendo que sobrevivan solo aquellos virus adaptados funcionalmente a unas condiciones ambientales concretas que prevalecen en el medio al que se enfrentan. A ello hay que añadir una propiedad singular de los virus que poseen genoma segmentado, como los virus gripales: dos variantes diferentes del virus pueden intercambiar segmentos de su genoma al azar si se encuentran co-infectando al mismo indivíduo. Este fenómeno es conocido como “redistribución genética” (“genetic reassortment”) y ofrece a los virus con genoma segmentado (como los virus de la gripe) un mecanismo muy eficaz de “barajar genes”, generando combinaciones distintas que pueden igualmente probar su eficacia frente a la selección natural ejercida por el medio. Volveremos sobre esto en la segunda parte.

 

Corolario 

En esta primera parte hemos visto que los virus gripales comprenden una enorme variedad de formas víricas, y hemos analizado la base de esa variedad a nivel molecular. Si después de leer esto aún les quedan ganas de seguir, en la segunda parte exploraremos sus características funcionales y cómo se las apañan para mantener en la naturaleza semejante diversidad, y como van surgiendo formas que a veces son capaces de saltar la barrera de especie y generar variantes más patógenas, dando lugar ocasionalmente a las pandemias de gripe.

Notas.

(1) El nombre de ” influenza”  se empleó ya en 1358 en Florencia, atribuyendo a la “influencia” de los astros, o posiblemente del frío, su aparición. El nombre de “grippe” (empleado por Sauvage en 1742), proviene del término francés “grippan”, y éste del alemán, “greiffen”, que quieren decir “agarrar”. Estas denominaciones han dado origen a las españolas de “gripe” e “influenza”, hoy en día consideradas sinónimas. Actualmente es el término gripe el más empleado en el lenguaje común. En términos científicos, gripe e influenza son sinónimos, y si bien la palabra gripe es más utilizada en el ámbito médico, influenza lo es en el veterinario.

(2) La denominación “gripe A”, popularizada en los medios de comunicación a raíz de la última pandemia de gripe de 2009, no es muy precisa que digamos, pues engloba a todos los influenzavirus tipo “A”, sean humanos, aviares, porcinos o equinos.

(3) Cualquier ser vivo está sujeto a evolución en un proceso que implica selección natural a partir de poblaciones sujetas a variabilidad genética. En eso, los virus se comportan como cualquier ser vivo. Sin embargo, al carecer de actividad metabólica propia, formalmente no se les considera “seres vivos” como tales, aunque sin duda forman parte de la materia viva.

 

Glosario

Antígeno: sustancia, normalmente parte de un microorganismo (virus, bacteria, parásito), que es reconocida y atacada por el sistema inmunológico del hospedador.

ARN monocatenario: ácido ribonucleico constituido por una sola cadena de nucleótidos. Los virus pueden tener genomas  mono o bicatenarios, de ARN o ADN.

Genoma: Dotación genética completa de una especie.

Glicoproteínas: proteínas que llevan en su estructura unas sustancias conocidas como glicanos, químicamente polisacáridos o azúcares complejos.

Hospedador o huésped: Organismo susceptible de forma natural a la infección por un determinado tipo de virus, bacteria o parásito.

Lipídica: perteneciente o relativa a los lípidos, que son las grasas naturales presentes en todos los organismos vivos. Todas las células y algunos virus como los de la gripe están rodeados por una membrana consistente en una doble capa de lípidos, que es una estructura conocida como bicapa lipídica.

Mutación: cambio genético que puede originar variaciones medibles en el organismo que la sufre.

Patogenicidad: capacidad de producir enfermedad en el hospedador. A veces se emplea como sinónimo de virulencia.

Serológico: relativo a la serología, que es un conjunto de técnicas de laboratorio que hacen uso de los anticuerpos (proteínas defensivas que genera el sistema inmunitario como respuesta a la presencia de una sustancia ajena al organismo, como p. ej. un agente infeccioso) para detectar, identificar y/o tipificar “antígenos”, como pueden ser agentes infecciosos o partes de éstos.

Secuencias de nucleótidos: En el material genético de los virus, como en el de cualquier ser vivo, la información se dispone en largas secuencias de nucleótidos. Los nucleótidos son las unidades o “bloques” básicos que constituyen los ácidos nucléicos (ADN y ARN) que integran el material genético. Cada nucleótido consta de un tipo de base nitrogenada unido a un azúcar  y a un fosfato. Hay cuatro tipos de bases nitrogenadas, designadas abreviadamente como A, C, G y T (U en el ARN). Las hebras de ADN o ARN consisten en largas hileras de nucleótidos formando hebras de miles de ellas (en los virus más pequeños) o millones en los cromosomas celulares. El orden en que están colocados esos diferentes tipos de nucleótidos en las largas moléculas de ADN o ARN es lo que conocemos como “secuencia de  nucleótidos” y es la forma que tienen los organismos de almacenar la información genética.

Tasa de mutación: frecuencia con la que ocurren errores  (mutaciones) al replicarse (copiarse) el material genético de un determinado organismo.

Etiquetas: , , , , , , , ,
Categorias: Nuevos virus

Gripe aviar A H7N9, China, 2013

Vamos a un virus emergente nuevo por año: en 2011 fue el virus Schmallenberg, en 2012 el nuevo coronavirus, y en 2013 parece que le ha tocado ese papel a la nueva cepa H7N9 de virus de la influenza (gripe) aviar detectada en China hace unos pocos días. Bueno, eso no es exactamente así, como ya saben los perspicaces lectores. En posts anteriores ya vimos que la emergencia de nuevos virus es un proceso constante. De todos los nuevos virus que emergen, sin embargo, solo unos pocos llaman nuestra atención, en particular por su capacidad de dañar a nuestra salud y/o la de nuestros animales o plantas. Y de estos pocos, solo un pequeño y selecto grupo alcanzan la fama, es decir, llegan a las páginas de los medios de comunicación general. Son estos pocos los que causan alarma. Parece este el caso de la nueva gripe aviar H7N9 que ha causado infecciones letales en humanos en China estos últimos días.

Antecedentes

El 31 de marzo (hace solo 9 días) la agencia Reuters se hacía eco de una noticia de la agencia estatal china de noticias Xinhua que anunciaba que la infección por una nueva cepa de gripe aviar había causado la muerte a dos personas en Shanghai (enlace). Al parecer esas dos personas (dos varones de 27 y 87 años)  adquirieron la infección a finales de febrero y murieron a consecuencia de ella a principios de marzo. Esta noticia inmediatamente desencadenó la alarma, pues se trata de un subtipo de virus de la influenza aviar (H7N9) que nunca antes había sido descrito que infectara a humanos, lo cual significa que no hay vacuna frente a él y tampoco existe inmunidad previa relevante en la población que pudiera protegerla de forma natural. Estos hechos, que son ciertamente preocupantes,  por si solos no hubieran desencadenado tanta alarma sin contar con el precedente de la influenza aviar H5N1. Como saben nuestros lectores, el punto álgido de esta epidemia -y de la alarma correspondiente desencadenada en los medios- tuvo lugar en 2006, cuando no era infrecuente escuchar a “expertos” decir que el riesgo de pandemia era inminente, y que en tal caso la pandemia de gripe de 1918, que causó entre 20 y 40 millones de víctimas, se quedaría corta. Afortunadamente, no ha ocurrido tal cosa, y con el tiempo se ha visto que ese riesgo era muy bajo. Lo que ha ocurrido es que el virus se ha extendido geográficamente por 15 países, causando en ellos importantes pérdidas en el sector avícola, y una zoonosis grave que se transmite de las aves de corral al hombre -pero no entre humanos- y que desde que fuera detectada en 1997 hasta hoy ha producido 622 casos de enfermedad en humanos, de los que 371 han sido mortales. A cambio, y gracias a los sistemas de alerta temprana implementados, poco después, en 2009 se pudo detectar y seguir en tiempo real una pandemia de gripe A H1N1 inesperada (como inesperados suelen ser todos los episodios de emergencia de virus) y aunque se empleó contra ella todo un arsenal de antivirales y vacunas que en alguna medida pudieron paliar algo su impacto, no se pudo evitar. El balance final de esta nueva gripe pandémica entre abril de 2009 y agosto de 2010 fue de unos 20.000 casos mortales confirmados en laboratorio (según la Organización Mundial de la Salud, OMS), aunque estimas indirectas sugieren que el número de víctimas mortales de esta pandemia pudo ser diez veces superior a esa cifra [1]. La OMS calcula que anualmente mueren en el mundo entre 200.000 y 500.000 personas a causa de la gripe estacional (enlace), de modo que la pandemia de nueva gripe A H1N1 de 2009 no fue especialmente grave. 

Para terminar de poner en antecedentes a los lectores hay que mencionar que, si bien el subtipo particular H7N9 no ha sido descrito hasta ahora en humanos, hay toda una amplia casuística de virus de gripe (o influenza) aviar del subtipo H7 (“Nx”) que han producido casos en humanos, algunos de ellos graves e incluso mortales. Recordemos, por ejemplo, el caso ocurrido en Holanda en 2003 en el que a raíz de un brote virulento de gripe aviar H7N7 en aves de corral, 86 personas que trabajaban en contacto con esas aves o en su entorno fueron contagiadas. La mayoría presentó conjuntivitis o síntomas similares a la gripe, pero uno de ellos desarrolló una neumonía grave y murió a causa de la infección [2]. De los 16 tipos de hemaglutininas conocidos, que caracterizan a los 16 subtipos “H” (H1-H16), hay dos, H5 y H7, que son especialmente sensibles a sufrir mutaciones que pueden dotar de elevada virulencia a los virus gripales que las poseen. Por ello, los virus gripales aviares cuyas hemaglutininas son de los tipos H5 o H7 son vigilados con especial intensidad. Esta especial capacidad de adquirir virulencia de estos dos subtipos se observa tanto para las aves como para los mamíferos, entre ellos los humanos. Por ello no sorprende demasiado encontrar el subtipo H7 en esta nueva cepa de gripe aviar patógena para humanos detectada en China hace unos pocos días

Situación actual

La situación actual (9 de abril) respecto a la gripe aviar H7N9, según fuentes oficiales chinas, es de 24 personas infectadas confirmadas en laboratorio. No se han hallado vinculaciones epidemiológicas entre ellos. Por provincias, 11 casos ocurrieron en Shanghai, 8 en Jiangsu, 2 en Anhui, y 3 en Zhenjiang. Todas estas provincias están muy próximas entre sí, en la costa oriental, la zona más densamente poblada del país. De los 24 casos, 7 murieron (5 en Shanghai y 2 en Zhenjiang) a causa de enfermedad respiratoria grave debida a la infección. Las investigaciones efectuadas por el momento en los contactos próximos a los casos confirmados  (se han estudiado ya más de 500 contactos) han dado resultados negativos, lo que sugiere que el virus no parece transmitirse eficazmente entre humanos. Hay resultados preliminares que indican que esta cepa vírica es sensible a antivirales como oseltamivir y zanamavir. La OMS de momento no considera recomendar medidas especiales de vigilancia fronteriza ni restricciones al comercio o viajes a las zonas afectadas. Se cree que la fuente de contagio son las aves, en particular aves de corral destinadas a la alimentación. Sin embargo, a diferencia de lo que ocurre con la cepa H5N1 altamente patógena, que produce elevada mortalidad en aves, esta nueva cepa H7N9 no parece ser tan patógena en aves, por lo que está siendo difícil seguirle la pista (FAO). Si se ha detectado el virus en algunas aves. Muestras de palomas recogidas en un mercado de Shanghai resultaron positivas a la prueba de detección del virus. China ha declarado la infección por virus influenza H7N9 “de baja patogenicidad” (*) en granjas de palomas y otras aves (en China la avicultura abarca un rango de especies más amplio que en los países occidentales) a la Organización Internacional de la Sanidad Animal (OIE) y ha decidido sacrificar las aves de esas granjas infectadas como medida preventiva. Entre otras medidas, las autoridades chinas también han decretado el cierre temporal de mercados de venta de aves vivas en Shanghai y otras ciudades, y la restricción de movimientos comerciales de aves procedentes de ls provincias afectadas.

El virus ha sido completamente secuenciado y las secuencias han sido puestas inmediatamente a disposición de la comunidad científica. El análisis de éstas indica que esta cepa pudo emerger como resultado de una reasociación de segmentos genéticos (los virus de la influenza, o gripe, tienen un genoma de ARN dividido en 8 segmentos) procedentes de virus A H7N9 y A H9N2 (ECDC). Especialistas destacados como Richard Webby, tras un examen preliminar de las secuencias, han declarado que el virus posee ciertas mutaciones que caracterizan a cepas con alguna adaptación a infectar mamíferos (enlace).

En el CDC de Atlanta (EE.UU.) han comenzado a fabricar una posible vacuna (lo que se conoce como un “candidato vacunal”) a partir de las secuencias genéticas del virus (aún no se dispone de ninguna cepa aislada) mediante reconstrucción sintética de genes y genética inversa.

En resumen, se ha detectado la existencia de un virus de gripe aviar del subtipo H7N9 circulando en China y que produce una enfermedad respiratoria grave en humanos. Por el momento hay muy pocos casos y al parecer no se transmite bien entre humanos, por lo que el riesgo de que origine una pandemia es muy bajo, como ha reconocido la propia OMS. No obstante habrá que seguir la evolución de este virus para poder anticiparse ante cualquier posible riesgo.

 

Referencias

[1] Dawood, F.S. et al (2012) Estimated mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Inf Dis 12:687-695.

[2] Fouchier, R. A. M. et al (2004) Avian influenza A virus (H7N7) associated with human conjuntivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004 February 3; 101(5): 1356–1361.

 

(*) En sanidad animal el concepto “baja patogenicidad” para las cepas de virus de gripe aviar está muy regulado, y es solo aplicable a aves, no a humanos. Las cepas con hemaglutininas de los tipos H5 ó H7 pueden ser de baja o de alta patogenicidad en función de los resultados observados en 2 tipos de pruebas: 1) su efecto en pollitos de 6 semanas, 2) la aparición de ciertas mutaciones detectables en la secuencia de la hemaglutinina, que correlacionan perfectamente con la patogenicidad en pollitos.

Etiquetas: , , , , , , , , , , , , , , , , , , , ,
Categorias: Nuevos virus

Nuevo coronavirus de Oriente Medio: actualización

Ya informamos desde este blog del descubrimiento el año pasado, en Arabia Saudí y otros países de Oriente Medio, de un nuevo coronavirus  que causaba una grave enfermedad respiratoria en humanos. Lo hicimos en dos posts (este en septiembre, y este otro en noviembre).  Desde entonces se han producido algunas novedades con respecto a este nuevo virus, que vamos a resumir a continuación:

Situación actual

Desde que se detectó el primer caso en verano pasado hasta hoy se han declarado a la OMS 13 casos, de ellos 7  mortales. Los países que los han declarado son Qatar (2 casos), Arabia Saudí (6 casos, 4 mortales), Jordania (2 casos, 2 mortales), y Reino Unido (3 casos, 1 mortal). En Jordania, Arabia Saudí y Reino Unido han ocurrido “clusters” de varios casos, en cada uno de los cuales se trataba de miembros de la misma familia, y en todos ellos ha ocurrido al menos una muerte. En el  “cluster” del Reino Unido el caso índice era importado, es decir,  una persona que adquirió la infección durante un viaje reciente a Arabia Saudí. Esta persona fue el origen de los dos casos subsiguientes, probablemente transmitidos de persona a persona, entre miembros de la misma familia. El primero de ellos, con una patología subyacente que pudo agravar su estado, finalmente murió, y el segundo, que desarrolló una infección respiratoria leve, similar a una gripe, se recuperó de la misma sin complicaciones.

Cuadro clínico

La información sobre el cuadro clínico va siendo más completa a medida que aumenta el número de casos: Se corresponde con una infección respiratoria aguda y grave (IRAG, o SARI en inglés) que se presenta en general como una neumonía aguda. Puede presentarse también con fracaso renal agudo. Menos frecuentemente  se observan pericarditis y coagulación intravascular diseminada. Uno de los casos confirmados en el Reino Unido muestra que la enfermedad también puede tener un curso leve, indicando que es probable que muchas infecciones leves por este virus podrían pasar desapercibidas, ya que únicamente se investigan los casos de enfermedad respiratoria grave.

Transmisión

En cuanto a la vía de transmisión, los primeros casos indicaban que podía tener lugar por contacto con animales que actuaran como reservorio (aunque no se conoce qué especies de animales podrían actuar como tales, sospechándose que el reservorio ancestral, como ocurre frecuentemente con los coronavirus, podría ser alguna especie de murciélago) pero casos más recientes parecen indicar que podría existir además tranmisión por contacto entre personas. Así, los clusters de casos familiares conviviendo en contacto, y en particular el cluster investigado en el Reino Unido indican que es posible la transmisión persona a persona, si bien parece que este tipo de transmisión es muy limitado y poco eficaz, a juzgar por el bajo número de casos observados hasta el momento. Se considera que las personas en contacto estrecho con una persona con infección aguda por este virus estarían en riesgo de adquirir la infección. El personal sanitario encargado de los cuidados a estos pacientes sería uno de los grupos de riesgo, según la OMS, que ha elaborado unas directrices para guiar la vigilancia y el control de la enfermedad, así como normas de bioseguridad y pruebas de laboratorio. Se pueden consultar en el siguiente enlace: http://www.who.int/csr/don/2013_02_13/en/index.html. El diagnóstico de laboratorio se ha desarrollado muy rápidamente, y ya existen pruebas diagnósticas fiables, monitorizadas por laboratorios de referencia, e implementadas en numerosos países.

Diferencias con el virus SARS

El nuevo coronavirus (nCoV) es de la misma familia que el virus SARS, pero los primeros análisis genéticos revelaron diferencias que indicaban que se trataba de virus distintos. Ambos pertenecen a la subfamilia de los betacoronavirus, pero dentro de esta subfamilia hay diversos linajes genéticos claramente distinguibles: el SARS se agrupa en un linaje conocido como 2b, mientras que el nCoV se agrupa en el linaje 2a. Las diferencias entre ambos virus no se limitan a pertenecer a distintos grupos genéticos, sino que también atañen a diversas características funcionales. Por ejemplo, se ha demostrado que el nCoV no utiliza los mismos receptores celulares que el virus SARS. Más aún, se ha podido comprobar que, a diferencia del virus SARS, que difícilmente infecta a células que no tengan origen humano, el nCoV infecta células de diversas especies de vertebrados, incluyendo células de murciélagos (algo que no hace el virus SARS), y en particular es muy eficaz infectando células humanas, lo que podría estar indicando una buena adaptación a la especie humana. A pesar de las diferencias notables entre ambos virus,  en la información relacionada con el nCoV se sigue citando al virus SARS como referente, posiblemente por ser éste un coronavirus patógeno grave para el hombre que se hizo muy conocido en 2003 al protagonizar una situación de emergencia mundial al causar una enfermedad que se expandió muy rápidamente causando 8000 casos de los que un 10% fueron mortales. Ello conlleva cierta dosis de alarmismo no bien justificado: de momento podemos decir que el nCoV ha tenido una transmisión muy limitada entre humanos, y que el riesgo de que ocurra una diseminación a mayor escala es bajo, como reconoce la OMS y la agencia de protección de la salud (HPA) del Reino Unido. No obstante, conviene  tener en cuenta el antecedente del virus SARS para estar prevenido y poner los medios para detectar tempranamente una posible emergencia a gran escala y actuar para evitar sus consecuencias, algo que por el momento se está haciendo con eficacia.

Investigación sobre tratamiento

Un estudio reciente (ver enlace) muestra como los interferones (sustancias que producen las células para defenderse de forma natural de la infección por diversos tipos de virus) actúan protegiendo a las células de la infección por el nCoV. Este estudio puede considerarse como  preliminar, y puede constituir un punto de partida para desarrollar nuevos tratamientos eficaces frente a la infección por el nCoV.

 

Más enlaces sobre este tema:

http://www.hpa.org.uk/NewsCentre/NationalPressReleases/2013PressReleases/130213statementonlatestcoronaviruspatient/

http://www.who.int/csr/disease/coronavirus_infections/en/index.html

http://mbio.asm.org/content/4/1/e00002-13.long

 

 

 

Etiquetas: , , , , , , , , , , , ,
Categorias: Nuevos virus

Un mundo, una sanidad, una virología

El niño/roedores/sindrome pulmonar por hantavirus; construcción de embalses/mosquitos/fiebre hemorrágica del Valle del Rift; comercio de animales silvestres/roedores/viruela de los monos; calentamiento global/jejenes/lengua azul; producción avícola/aves silvestres/gripe aviar; nuevos regadíos/mosquitos/aves/encefalitis por flavivirus…

No me he vuelto loco. Solo son ejemplos de lo imbricadas que están tres áreas de conocimiento que tradicionalmente se han desarrollado por separado y a menudo de espaldas unas de otras: la sanidad humana,  la sanidad animal y el medio ambiente. En negrita se destacan determinadas enfermedades causadas por infecciones víricas, que afectan al hombre y/o a los animales, y que a menudo se mantienen en la naturaleza en especies de animales silvestres que actúan como reservorio. Roedores, murciélagos, aves, son frecuentemente reservorios de enfermedades que afectan al hombre (zoonosis) y/o a los animales domésticos (“enfermedades compartidas“). Algunas de ellas, además, son transmitidas por picaduras de artrópodos. Está claro que el conocimiento de estas enfermedades ha de verse potenciado por la interacción entre especialistas en diversas disciplinas, incluyendo profesionales de la medicina humana y veterinaria, epidemiología, virología, entomología, zoología, genética, inmunología, ecología, climatología, etc.

La semana pasada se celebraron en Madrid dos importantes eventos científicos relacionados con el mundo de los virus emergentes: El IX International Congress of Veterinary Virology y el 15th Annual Meeting of the European Society for Clinical Virology. Ambos congresos, auspiciados por las Sociedades Europeas de Virología Veterinaria (ESVV) y de Virología Clínica (ESCV), respectivamente, se hicieron coincidir no solo en el espacio y en el tiempo, sino también bajo un mismo lema: “One world, one health, one virology” (un mundo, una sanidad, una virología), inspirado en el lema “One world, one health” que fue lanzado hace unos años por la OMS (Organización Mundial de la Salud), la FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación) y la OIE (Organización Internacional para la Sanidad Animal) para subrayar la necesidad de un enfoque global de la salud.

De acuerdo con este espíritu interdisciplinar, está claro que un encuentro entre los virólogos que se dedican a los virus humanos y aquéllos que se dedican al ámbito veterinario puede resultar muy útil. No es que no hablen entre ellos. De hecho, hay muchos congresos de virología “general” que no distinguen ambos mundos, pero es cierto que hay una distancia que conviene estrechar. Por ello, ambos congresos (ESVV y ESCV) celebraron una sesión conjunta a la que dedicaron el último día, haciendo realidad el lema común de “One world, one health, one virology“.

La sesión conjunta fue planteada como una serie de conferencias magistrales, intercedidas por sesiones monográficas “cara a cara” donde especialistas de la virología médica y veterinaria exponían su visión sobre un determinado tema. Tanto las conferencias magistrales como las sesiones monográficas versaron, como es lógico, sobre zoonosis víricas. La selección de temas fue acertada (virus gripales, virus West Nile y arbovirosis hemorrágicas emergentes en las sesiones, una conferencia sobre dinámica cuantitativa de las zoonosis víricas, otra sobre murciélagos como reservorios de virus, una tercera acerca de investigación traslacional en virología clínica y veterinaria, y la cuarta sobre  la barrera de especie en las zoonosis víricas). El nivel científico de las conferencias y sesiones estuvo a gran altura y la audiencia mostró un gran interés, a juzgar por las discusiones y preguntas al final de cada intervención.

La sesión conjunta fue sin duda una gran idea y un acierto de los organizadores, a quienes hay que dar la enhorabuena no solo por la excelente organización, sino también por promover esta interacción entre virólogos médicos y veterinarios. Los organizadores anunciaron más sesiones conjuntas de este tipo en futuros congresos. Estos encuentros deben estimular la colaboración científica en estos ámbitos lo que redundará en más conocimientos y mejor comprensión de estas enfermedades, algo necesario para desarrollar mejores tratamientos y medios eficaces para la prevención y el control de las mismas.

El enlace entre los dos mundos de la virología ya se ha producido. Ahora hay que sumar a este esfuerzo el de otros especialistas, en particular del ambito medioambiental para acercarse más  a ese “One world, one health“.

Enlaces a las páginas web de los congresos de la ESVV y la ESCV 2012:

http://esvv2012.com/spain/

http://www.escv2012madrid.com/

 

 

Etiquetas: , , , , , , , , , , , , , ,
Categorias: General