Identificación de usuariosPortal de Empleo I+D+i


 COMPARTIR OFERTA
Facebook  Twitter 
Imprimir en blanco y negro
Ofertas de empleo
 

Oferta de Trabajo  Código: 29496  

Puesto: Research assistant. Phd candidate - computational materials science & engineering

Función: Multiscale modeling of microstructure growth during solidification of alloys
Empresa: IMDEA Materiales Nº de Plazas: 1
Referencia: SOL-RA01 Publicada el 11/10/2018 Publicada hasta el 10/01/2019
Tipo de Contrato: Sin especificar Dedicación: Jornada completa  
Localidad: Getafe Provincia: Madrid Disponibilidad para viajar: Sin especificar
Fecha de Incorporación: Inmediata  

Nivel Académico
Master  

Titulación Académica
Física (Titulación Universitaria)
Matemáticas (Titulación Universitaria)
Ingeniería de Materiales (Titulación Universitaria)

Áreas tecnológicas
A-033 Simulación computacional
L- Física
P- Arquitectura, Ingeniería y Producción

Idiomas
Idioma: Inglés Nivel Lectura: Alto Nivel Escrito: Alto Nivel Conversación: Alto

Conocimientos de Informática  
Strong interest in scientific programming (such as C, C++)

Otros

DESCRIPTION

IMDEA Materials Institute (Madrid, Spain) is looking for a Research Assistant (MSc Degree or equivalent in Materials Science and Engineering, Computational Physics, or related fields) to carry out a PhD in Computational Materials Science and Engineering. 
The research will focus on multiscale modeling of microstructure growth during the solidification of alloys (such as in casting, welding, or additive manufacturing processes). These microstructures and their morphologies strongly affect the thermomechanical properties of technological components. Hence, they occupy a central role in developing innovative alloys and processing routes for next generations of high-performance structural materials. Specifically, the project will address the effect of fluid flow on the selection of dendritic microstructures.
The candidate will develop computational codes to model dendritic crystal growth, based on a newly introduced multiscale modeling approach. The candidate will gain knowledge and skills in thermodynamics and kinetics of phase transformations, computational fluid dynamics, fluid-particle interactions, and high-performance parallel computing. Research activities will also explore coupling pathways with models applicable at other length and time scales, such as phase-field, molecular dynamics, and continuum approaches. 
While the PhD project is focused on computational modeling, international collaborators will provide experimental measurements that will be crucial to the validation of the developed model. The model will, in turn, be used to simulate and provide original interpretations to experimental observations and measurements.
REQUIREMENTS
The candidate should hold a Master's degree in Materials Science and Engineering, Computational Physics, or a related discipline, with excellent academic credentials. Candidates with knowledge in numerical simulation of materials (e.g. computational fluid dynamics, thermomechanics, thermodynamics, kinetics) as well as experience and a strong interest in scientific programming (such as C, C++) are strongly encouraged to apply. 
Full proficiency in English, oral and written, is mandatory. No knowledge of Spanish is required (free classes offered on site).
Interested candidates should submit their Curriculum Vitae, academic records, and a cover letter addressing their motivation and scientific interests. 
CONDITIONS
Starting date: Available immediately; open until filled
Full time contract including social security coverage
Enrolment in an academic PhD program

 

 

Interested candidates may apply here: http://jobs.materials.imdea.org/offer/71/apply



Si es ud. un usuario registrado con su Currículum en la sección del portal de empleo i+d+i y está interesado en esta oferta de trabajo puede ud. inscribirse directamente en la Oferta a través del botón "inscribirse". Su interés por la oferta será comunicado a la empresa y su Currículum será accesible para la misma durante el proceso de selección asociado.