Archivo de autor

Marruecos y España: ejemplos opuestos de Planificación Energética

Autor: Eduardo Zarza Moya-CIEMAT

La necesidad de hacer frente tanto al importante incremento en el consumo de energía primaria que se prevé a medio plazo a nivel mundial, como los problemas medioambientales que el uso masivo de los combustibles fósiles ha provocado, han hecho que la Energía se haya convertido en un tema clave. No obstante, el modo en que los distintos países enfocan el problema energético es muy diferente, siendo España y Marruecos buenos ejemplos de esta disparidad de estrategias y enfoques.

Mientras en España es evidente, desde hace muchos años, la necesidad de un Pacto de Estado entre los principales partidos políticos para definir una estrategia energética a medio y largo plazo, que acabe con los continuos bandazos que los diversos Gobiernos vienen dando desde hace varias décadas, en Marruecos existe una planificación energética, seria, sensata y coherente, que permitirá a ese país reducir de forma importante su dependencia energética del exterior, a la vez que le dotará de un sector eléctrico altamente sostenible y descarbonizado, basado en una importante contribución de dos energías renovables que son abundantes en ese país: la solar y la eólica.

Resulta difícil comprender por qué a los dos principales partidos políticos de España, PP y PSOE, les resulta tan difícil llegar a acuerdos sobre aquellos temas de interés nacional que difícilmente pueden acometerse con éxito y coherencia si no se basan en un Pacto de Estado que defina claramente el marco regulador de las decisiones que vayan tomando los sucesivos gobiernos. La falta de un Pacto de Estado en materia energética nos ha conducido a una situación difícil de entender, por el cumulo de decisiones faltas de acierto y, en muchas ocasiones, contradictorias. En España, incluyendo las islas, tenemos actualmente unos 105 GWe de potencia instalada, de los cuales las porciones mayores corresponden a las plantas de ciclo combinado (25,3 GWe), parques eólicos (23,15 MWe), hidráulica (21 GWe), carbón (11 GWe), nuclear (8 GWe) y cogeneración (7,2 GWe). El resto se lo reparten las demás tecnologías (fotovoltaica, termosolar, etc.). Frente a esta potencia total instalada se sitúa el consumo eléctrico máximo histórico, que tuvo lugar en el año 2007 y fue de 45,45 GWe. Estas cifras muestran que en España hay un enorme exceso de potencia instalada, lo cual unido a unas pobres interconexiones con los países vecinos, provoca que una gran parte del parque eléctrico nacional esté inactivo o, en el mejor de los casos, muy por debajo de un funcionamiento rentable, como es el caso de los ciclos combinados y las centrales de carbón.

La pregunta que inmediatamente surge al ver estas cifras es ¿cómo se ha llegado en España a esta absurda situación?. A esta pregunta se puede responder de una forma clara y concisa: la causa de esta situación ha sido la falta de una planificación energética. Durante los gobiernos de Aznar se apostó principalmente por las centrales de ciclo combinado, realizándose una inversión  superior a los 13.000 millones de Euros, mientras que posteriormente el gobierno de Zapatero aposto fuertemente por las energías renovables e impulsó el parque eólico, fotovoltaico y termosolar. En total se invirtió en poco más de diez años unos 70.000 millones de euros. !Que lástima de dinero tan mal invertido¡. Con una adecuada planificación energética se habría realizado una inversión más productiva y rentable para España.

Resulta evidente que los dos principales partidos políticos, PP y PSOE, son incapaces de poner el interés nacional en materia energética por encima de sus intereses de partido. Algo parecido ocurre con la Educación, otro aspecto en el que se necesita con urgencia un Pacto de Estado que acabe con los vaivenes sin sentido y los dislates que gobierno tras gobierno cometen. Basta tener en cuenta lo sorprendente que resulta que haya tantas Historias de España como Comunidades Autónomas, de modo que, dependiendo de la Comunidad Autónoma en la que estudies, te contarán una Historia u otra, cuando la verdad es que solo existe una Historia y debería ser contada de igual forma en todas las Comunidades Autónomas. Pero volvamos al tema de la Energía, que es el objeto de este artículo.

No deja de ser sorprendente, y a la vez aleccionador, que las autoridades de Marruecos demuestren tener las ideas mucho más claras que los gobernantes españoles en materia de Energía. Marruecos carece de las reservas de petróleo y gas natural de su vecino argelino, y sufre una dependencia total de hidrocarburos. En 2009, Marruecos importaba el 95% de la energía que consumía. Pero decidió cambiar esta situación y definió una política energética clara y seria, tendente a reducir de forma importante su dependencia energética exterior, a la vez que decidió apostar por el uso de dos fuentes energéticas renovables abundantes en Marruecos: la eólica y la solar.

El 2 de noviembre de 2009, el entonces Ministro de Economía de Marruecos, Salahadin Mezuar, presennto el llamado Plan Solar de Marruecos, que preveía la construcción de 2000 MWe de centrales solares (fotovoltaicas y termosolares). El objetivo de Mohamed VI es conseguir que en 2030 el 52% de la capacidad eléctrica del país proceda de la energía renovable, frente al 34% actual. Para llevar a cabo con éxito su Plan Solar, el gobierno marroquí creó en marzo de 2010 la Agencia Marroquí para la Energía Solar, MASEN (Moroccan Agency for Solar Energy, http://masen.org.ma/). MASEN es una compañía con fondos públicos, cuyo capital es aportado por el Estado de Marruecos, el Fondo Hassan II para el Desarrollo Social y Económico, la Oficina Nacional de Agua y Electricidad (ONE) y la Sociedad de Inversiones Energéticas (SIE). Los tres objetivos principales de MASEN son: el desarrollo de centarles solares, contribuir al desarrollo de una industria solar nacional y asegurar una adecuada coordinacion entre los planes regionales e internacionales.

Fruto del buen hacer de MASEN y de un plan energético claro, Marruecos está construyendo en la actualidad en Ouarzazate las centrales termosolares NOOR-II y III, que junto con NOOR-I, ya en funcionamiento desde principios de 2016, tendrán una potencia total instalada de 500 MWe. El Plan Solar de Marruecos se basa en un adecuado equilibrio entre dos tecnologías solares que son claramente complementarias: la fotovoltaica y la termosolar. Las centrales  fotovoltaica producirán electricidad a un precio muy reducido durante las horas de Sol, mientras que las centrales termosolares aportarán con su alto grado de gestionabilidad la producción eléctrica necesaria por la noche, consiguiendo de este modo un precio medio de la electricidad inferior a los 0,08 €/kWh, que es un precio bastante razonable y competitivo. De este modo, y basado en un estudiado equilibrio entre la electricidad fotovoltaica y la termosolar, Marruecos contará muy pronto con electricidad de origen solar a un precio competitivo, que unido a la producción eólica de las plantas construidas en el Norte y en la costa oeste, reducirán de forma importante su dependencia energética y creará una industria nacional importante.

La coherencia y visión a largo plazo de la autoridades marroquíes en materia energética es aún más evidente si tenemos en cuenta otras medidas adoptadas por dichas autoridades con el objetivo de avanzar de forma clara y sin titubeos hacia el objetivo marcado de conseguir reducir el actual consumo de combustibles fósiles. Algunas de dichas medidas han sido tremendamente impopulares, como la eliminación de los subsidios públicos a los combustibles derivados del petróleo en el año 2012, que provocó una subida del 20% de la gasolina en Marruecos. Pero el gobierno marroquí no se ha guiado por la popularidad o impopularidad de sus decisiones, sino por la coherencia de las mismas con el objetivo energético nacional definido.

En España, en cambio, seguimos sin hacer análisis energéticos serios, y el Gobierno sigue dando brochazos sueltos y descoordinados sobre el lienzo energético nacional, produciendo de este modo un cuadro de pésima calidad. En España seguimos poniendo parches, buscando simplemente lo más barato, pues lo único que se persigue es cumplir el objetivo comprometido en cuanto a producción de electricidad renovable, como ha quedado de manifiesto en la reciente subasta de energías renovables realizada por el actual gobierno, y en la nueva subasta ya anunciada el 23 de mayo por nuestro presidente, Mariano Rajoy. En España no tenemos en cuenta ni los beneficios sociales, ni la gestionabilidad de las diversas opciones tecnológicas, pues las decisiones tomadas en materia energética durante las últimas décadas evidencian una alta dosis de improvisación y falta de visión de futuro. Y por si esto no fuera suficiente, esta falta de visión de futuro y coordinación se ve agravada por las decisiones tomadas por el Ministerio de Hacienda que impiden a centros nacionales de prestigio internacional, como la Plataforma Solar de Almería, poder ejecutar sus proyectos internacionales plurianuales de I+D que cuentan con fondos europeos, lo cual obligará a tener que devolver a Bruselas dichos fondos, con la consiguiente pérdida de puestos de trabajo e inversión en España, mientras que Marruecos nos da una lección de coherencia y seriedad en materia energética. Ojala que la situación cambie y se logre en España el tan necesitado Pacto por la Energía.

Etiquetas:

Récord de renovables en 2016, pero queda trabajo por hacer

Autora: Elena Díaz-Instituto IMDEA Energía

El pasado 7 de Junio la asociación internacional sin ánimo de lucro REN21 publicó el informe sobre el estado global de las energías renovables durante 2016 y principios de 2017, lleno de buenas noticias.

La instalación de nuevas plantas de generación eléctrica de fuentes renovables alcanzó un nuevo récord en 2016, con un total 161 GW que aumentan la capacidad total instalada en un 9% con respecto al año anterior. La tecnología con mayor aumento es la solar fotovoltaica, que supone un 47% de las nuevas instalaciones, a la que siguen la eólica (34%) e hidráulica (15,5%). Además, es el quinto año consecutivo en el que la inversión en energías renovables duplica la de generación por combustibles fósiles. Los países que más han invertido en generación renovable son China y Estados Unidos aunque si se normaliza según el producto interior bruto pasan a serlo Bolivia y Senegal. En la Figura 1 se muestra esta clasificación global junto con la clasificación por tecnologías.

 

Figura 1: Clasificación de los 5 países con mayores inversiones en generación renovable, total y por tecnología (2016).

El 24.5% de la electricidad producida en 2016 fue a partir de fuentes renovables, principalmente hidroeléctrica (Figura 2). Esto, unido al descenso en el uso del carbón y al aumento en la eficiencia energética, ha conseguido mantener estables las emisiones de CO2 a la atmósfera, a pesar de que la tanto la economía global como la demanda energética han aumentado. Esta tendencia refleja claramente el desacoplamiento entre el desarrollo económico y las emisiones, un paso importante en el camino de reducción de emisiones necesario para evitar un aumento mayor de 2 ºC en la temperatura global del planeta.

 

Figura 2: Participación de las energías renovables en la producción eléctrica global (2016).

Es común que, al hablar de energías renovables, salgan a relucir inconvenientes como la falta de gestionabilidad o el excesivo precio. Sin embargo, en este informe se los considera mitos ya que ha habido numerosos avances en ambas direcciones. Se están produciendo cuantiosos progresos y novedades en el ámbito del almacenamiento y la gestionabilidad de forma que en varios países se han podido administrar picos de generación renovable de alrededor o incluso superando el 100%, como Dinamarca o Alemania. Además, los precios están cayendo de forma rápida y continua para todas las tecnologías, en especial fotovoltaica y eólica para las que se han registrado precios de 0.05$/kWh. Es por esto que el argumento de que las energías renovables son aplicables sólo en países ricos ya no es válido. La gran mayoría de las centrales renovables se instalan en países en desarrollo y su participación irá en aumento. Alrededor de 50 de estos países se han comprometido a llegar al 100% de renovables, y no son los únicos. Durante 2016 más de 30 empresas se han unido a RE100, una iniciativa global en la que se comprometen a realizar sus actividades con un 100% de electricidad renovable. Esto demuestra que, además de las ventajas medioambientales, tiene sentido desde el punto de vista económico.

 

Sin embargo, a pesar de todas estas buenas noticias, la transición energética no se está produciendo a la velocidad necesaria como para llegar a los objetivos del Acuerdo de París. Aunque la capacidad instalada aumenta, las inversiones fueron un 23% menores en 2016 que en 2015 y además se centran en energía fotovoltaica y eólica, dejando de lado el resto de tecnologías también muy necesarias para alcanzar las metas fijadas. Por otro lado, se hacen muchos esfuerzos en el ámbito de generación eléctrica pero menos hacia el transporte, calefacción y frío. Finalmente, la existencia de subsidios a los combustibles fósiles es uno de los factores que ralentiza el avance. Globalmente, por cada dólar invertido por los gobiernos en energías renovables, se invierten 4 en perpetuar la dependencia de los combustibles fósiles.

 

La eliminación de esos subsidios es una de las medidas que se proponen en el informe para intentar acelerar la transición. Se plantean otros propuestas, todas relacionadas con la eliminación de la supremacía de las fuentes fósiles para generación de energía, como la creación de políticas que aboguen por las energías renovables, o la desviación del esfuerzo desde el estudio de la carga base de origen fósil hacia la investigación de gestionabilidad y almacenamiento para que las renovables puedan actuar como tal.

 

Nos encontramos en un buen momento para las energías renovables. Se confirma su buen funcionamiento, crecimiento y competitividad frente a las tecnologías convencionales emisoras de gases de efecto invernadero. Sin embargo, debemos trabajar en consolidar y acelerar su crecimiento para alcanzar los objetivos de emisiones en un futuro cercano.

 

Más información:

Etiquetas:

Avances en la modelización de escenarios energéticos en la Comunidad de Madrid

Autores: Diego García y Diego Iribarren-Instituto IMDEA Energía

Los días 5 y 6 de junio de 2017 tuvo lugar en Miraflores de la Sierra (Madrid) el 2nd Biomass Resources for Renewable Energy Production Workshop, en el marco del proyecto RESTOENE-2-CM (S2013/MAE-2882). En este evento se abordaron diversos avances relacionados con el diseño de nuevas técnicas experimentales y componentes biotecnológicos orientados a la mejora de las tecnologías de conversión de la biomasa a biocombustibles.

La Unidad de Análisis de Sistemas del Instituto IMDEA Energía presentó los últimos avances en modelización energética prospectiva para la Comunidad de Madrid. En particular, se mostraron los nuevos desarrollos en modelización de escenarios de transporte, desde una perspectiva tanto tecnoeconómica como ambiental. Además, se mostraron los primeros pasos dados en cuanto al acoplamiento de Sistemas de Información Geográfica (SIG) a modelos energéticos prospectivos creados para facilitar la toma de decisiones a nivel de ayuntamiento. A modo de ejemplo, como se ilustra en la figura para el caso de estudio de Alcorcón, este tipo de avances metodológicos facilita la identificación de las zonas más beneficiadas (en términos de consumos energéticos y emisiones) en caso de implementar medidas de eficiencia en el sector residencial. El fin último de todos estos avances es allanar el camino hacia planes energéticos sensatos que se alineen con los objetivos globales de sostenibilidad.

 

Emisiones de CO2 asociadas a gas natural en Alcorcón: 2015 (izquierda) vs. 2030 (derecha)

Etiquetas:

13th Sollab doctoral colloquium on solar concentrating technologies

Autor: Lucía Arribas-Instituto IMDEA Energía

 

Entre los días 15 y 17 de mayo tuvo lugar en Berlín el encuentro anual de jóvenes investigadores en el ámbito de tecnologías de energía solar concentrada, en el que participan investigadores de este ámbito de distintos países de la Unión Europea.

Este coloquio está enmarcado dentro del proyecto Sollab (alianza de laboratorios europeos en sistemas de energía solar térmica concentrada) en el que participan: la Plataforma Solar de Almería (perteneciente al CIEMAT), el DLR (Centro aeroespacial alemán), ETH (Escuela Politécnica Federal de Zúrich, Suiza) y PROMES (unidad de investigación del CNRS, Centro Nacional para la Investigación Científica de Francia). Cada año se encarga una de las instituciones de organizarlo en su país.

Los estudiantes de doctorado de las 4 instituciones presentan sus trabajos, y, además, se invita a estudiantes de otras instituciones que trabajen en este ámbito, como es el caso de la Unidad de Procesos de Alta Temperatura del Instituto IMDEA Energía.

Este año la organización le correspondía al DLR, teniendo lugar en una de las ciudades más visitadas de Europa, Berlín.

Durante los 3 días del coloquio, se presentaron 35 trabajos de tesis enmarcados en los siguientes ámbitos:

  • Termoquímica solar
  • Tratamiento de agua y fotoquímica solar
  • Fotovoltaica concentrada
  • Electroquímica solar
  • Almacenamiento térmico de energía
  • Materiales, medidas y caracterización
  • Sistemas de concentración solar

Este evento anual sirve para poner en común los últimos avances en el ámbito de la energía solar concentrada y, además, es útil para conocer a los investigadores del sector y como entrenamiento en presentaciones para los estudiantes de doctorado.

De la Unidad de Procesos de Alta Temperatura del Instituto IMDEA Energía participaron dos investigadoras. Elena Díaz, que presentó su trabajo bajo el título “Integration of fuel cells in solar thermal plants” y Lucía Arribas con “Directly irradiated fluidized bed reactor for solar thermochemical applications”.

Etiquetas:

Comienza el proyecto WASTE2BIO

Con la reunión de lanzamiento celebrada el pasado mes de abril en las instalaciones de IMECAL, se da por iniciado el proyecto WASTE2BIO “Valorization of urban WASTEs TO new generation of BIOethanol” 

Autor: Jose Miguel Oliva  -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT

El pasado mes de abril tuvo lugar la reunión de lanzamiento del proyecto WASTE2BIO “Valorization of urban WASTEs TO new generation of BIOethanol”  (Valorización de residuos urbanos para la producción de bioetanol).

El proyecto, coordinado por IMECAL, está financiado por  ERA-NET Cofund Bioenergy Sustaining the Future 3 (BESTF3) dentro del H2020. Se trata de una  convocatoria internacional conjunta que financia proyectos innovadores en bioenergía con alto componente demostrador liderados por la industria.

El consorcio lo forman cuatro participantes, dos PYMES: IMECAL (Industrias Mecánicas Alcudia S.A. (España) y EXERGY Ldt. (Reino Unido) y dos centros de investigación: la unidad de Procesos Biotecnológicos del IMDEA Energía y la Unidad de Biocarburantes del CIEMAT.

El proyecto tiene una duración de 3 años y tiene como objetivo demostrar y validar un proceso global de recuperación de energía partir de la fracción orgánica de los residuos sólidos urbanos mediante su transformación en bioetanol con el proceso PERSEO Bioethanol® y biogás con objeto de valorizar dichos residuos reduciendo el coste energético e impacto durante su tratamiento.

En el proyecto se proponen varias líneas de trabajo como  la mejora de los diferentes procesos y etapas involucrados en la valorización de la fracción orgánica de los RSU como son el pretratamiento con el fin de obtener una fracción orgánica libre de inertes, la producción de bioetanol, la digestión anaerobia del residuo obtenido tras la fermentación y la producción de fertilizantes. Igualmente se pretende una validación y demostración del proceso a escala semi-industrial que incluya una integración del proceso una evaluación tecno-económica y energética y un análisis de sostenibilidad. Por último se pretende una integración de los resultados del proyecto en el nuevo modelo de tratamiento de RSU definiendo la estrategia de explotación y el modelo de negocio.

Así pues este proyecto, con una aproximación tecnológica cercana al mercado,  pretendedesarrollar un proceso global que disminuya los costes de la gestión de residuos sólidos urbanos respecto a los tratamientos convencionales en un 20%, al mismo tiempo que se reduce el volumen de residuos enviados a vertedero mediante su valorización en bioetanol, biogás y biofertilizantes.

 

 

Etiquetas:

Luz solar para producir hidrógeno renovable a partir de biomasa lignocelulósica

Autor: J.L.G. Fierro, Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid

En un estudio reciente realizado en la Universidad de Cambridge se ha puesto de manifiesto que la biomasa sin procesar (serrín, hojas de vegetales, bálago de cereal) se puede convertir fácilmente  en hidrógeno limpio mediante iluminación con luz solar una disolución acuosa alcalina en la que permanece la biomasa en suspensión y a la que se añaden partículas de un fotocatalizador. El proceso opera en condiciones muy suaves, esto es, presión y temperatura ambientales, lo que contrasta con la tecnología convencional de obtención de hidrógeno a partir de biomasa mediante gasificación. La desventaja de este proceso es que la velocidad de formación de hidrógeno es muy baja.

La lignocelulosa, que es el componente principal de la biomasa del planeta, fue el origen de las reservas de petróleo. Este precursor sometido bajo los estratos sedimentarios de la corteza terrestre a elevadas presiones y temperaturas, en ausencia de aire,  durante millones de años generó las mezclas de hidrocarburos que constituyen el crudo que utilizamos en la actualidad para la producción de combustibles de transporte. Pero las reservas de petróleo han ido disminuyendo de forma muy significativa en las últimas décadas. Esto ha hecho que en la actualidad se exploren vías de transformación del material lignocelulósico en la fabricación de combustibles sintéticos y productos químicos.

La tecnología convencional de fabricación de combustibles sintéticos a partir de biomasa incluye dos etapas: una primera de gasificación para producir una mezcla gaseosa de CO y H2, y una segunda de transformación de esta mezcla en hidrocarburos. El proceso global requiere la construcción de plantas  grandes, lo que implica un coste elevado, a lo que hay que añadir una eficiencia del proceso limitada.

Recientemente un equipo de investigación del laboratorio Christian Doppler de la Universidad de Cambridge, Reino Unido, ha desarrollado una metodología relativamente sencilla que permite extraer el hidrógeno presente en la biomasa lignocelulósica en un solo paso en condiciones ambientales, esto es, temperatura y presión ambiental con el único recurso de la luz solar. Esta tecnología, que ha sido publicada en la revista Nature Energy 2, 17021 (2017) (doi:10.1038/nenergy.2017.21) consiste básicamente en un simple proceso de conversión fotocatalítica. Se añaden partículas del fotocatalízador en la disolución acuosa alcalina y se mantiene en suspensión conjuntamente con la propia biomasa. El conjunto se ilumina con una lámpara que simula la luz solar. Los fotones absorbidos en las partículas de fotocatalizador son capaces de realizar la transformación del material polimérico de la biomasa y generar hidrógeno libre de monóxido de carbono u otras impurezas.

 

Figura 1. Hoja de papel colocada en una disolución alcalina iluminada con luz solar.

La limitación del proceso en la actualidad reside en la baja producción de hidrógeno. Resulta evidente que se requieren escalados sucesivos para establecer si la metodología de laboratorio alcanza un desarrollo industrial. De hecho se ha realizado una patente de aplicación de la prueba de concepto.

Bibliografía

D.W. Wakerley, M.F. Kuehnel, K.L. Orchard, K.H. Ly, T.E. Rosser and E. Reisner, Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst, Nature Energy 2, 1 7021 (2017) (doi:10.1038/nenergy.2017.21)

Etiquetas:

“Women in Catalysis”, monográfico de la revista Catalysis Today

Autora: Raquel Portela, ICP-CSIC

Históricamente las mujeres han sido apartadas de los círculos de conocimiento, e incluso aquellas que conseguían participar en ellos eran excluidas de la vida académica. A pesar de estas barreras, desde tiempos remotos las mujeres han hecho contribuciones significativas a la ciencia, aunque sólo recientemente o de forma ocasional se han visto plenamente reconocidas sus aportaciones al progreso del conocimiento y de la tecnología. La importancia de los descubrimientos de Marie Skłodowska-Curie (1867–1934), por ejemplo, mereció el premio Nobel gracias a que su marido lo exigió, haciendo público que ella era la que responsable de la mayoría del trabajo; sin embargo, con frecuencia, los hallazgos relevantes realizados por mujeres no les han proporcionado reconocimiento [1].

En la actualidad la mujer tiene igualdad de derechos que el hombre y está plenamente integrada en la academia. No obstante, aunque su llegada a las universidades es ya masiva y algunas de las científicas más reconocidas son del sexo femenino, las mujeres están infrarrepresentadas en el mundo de la ciencia y, sobre todo, de la tecnología, especialmente en los puestos de relevancia y de responsabilidad, en línea con lo que ocurre en otros sectores [2]. Son todavía relativamente escasas las ocasiones en las que las mujeres lideran proyectos, son invitadas a conferencias plenarias o presiden paneles de expertos. La brecha de género es aún muy importante a pesar de medio siglo de intensa lucha por la igualdad de oportunidades y de la aplicación de medidas correctoras desde gobiernos e instituciones.

El mundo de la química, y en particular de la catálisis, no es ajeno a esta brecha. Por ello es remarcable el hecho de que la revista “Catalysis Today” haya presentado el número monográfico “Women in Catalysis” [3],  editado por una mujer, O. Guerrero- Pérez (de la UMA), que recoge 21 artículos escritos por científicas de varios países especializadas  en la catálisis, entre las que se encuentran varias investigadoras españolas como I. Díaz-Carretero o V. Martínez-Huerta, del ICP (CSIC), R.M. Martín-Aranda o M.L. Rojas-Cervantes, de la UNED, o M. Boronat, del ITQ (UPV-CSIC).

La publicación de este número especial pretende dar mayor proyección al trabajo de las mujeres.  Se trata de una colección de reseñas y perspectivas escritas 100% por investigadoras que abarcan muchas áreas diferentes de la catálisis y que son sólo un pequeño ejemplo de su potencial en un mundo aún dominado por los hombres. Como la editora O. Guerrero señala, “esperemos que esta edición especial ayude a catalizar una presencia cada vez más equilibrada de las mujeres en la Ciencia”.

 

Bibliografía:

[1] Women in Science, European Commission. 2009.

[2] Report on equality between women and men 2015, European Comission. 2016.

[3] Catalysis Today. Women in Catalysis. Volume 285, Pages 1-234, May 2017.

Etiquetas:

CECOER, el centro de control de energías renovables de ACCIONA, incorpora 1.100 MW de clientes en 3 meses

El Centro de Control de Energías Renovables (CECOER) de ACCIONA, que gestiona las instalaciones de la compañía y las de otros promotores a los que representa, ha incorporado en el primer trimestre de 2017 un total de 1.104 megavatios (MW) a su cartera de clientes, correspondientes a instalaciones de las compañías Eolia Renovables (633 MW) y Grupo Vapat (471 MW).

Los respectivos contratos de prestación de servicios, formalizados a través de la sociedad ACCIONA Green Energy Developments, elevan a 12.883 MW la capacidad renovable gestionada actualmente por el CECOER. De dicha potencia, el 69% corresponde a instalaciones propiedad de ACCIONA Energía y el 31% restante a otros promotores.

En el caso de Eolia, el CECOER, actuará como centro de control para parques eólicos que suman 564 MW, y plantas fotovoltaicas con 69 MW de potencia conjunta. Por su parte, el contrato con el Grupo Vapat comprende instalaciones eólicas en España que totalizan 471 MW, informa la compañía en un comunicado.

Agradecemos a nuestros clientes que confíen en ACCIONA para la interlocución con el sistema eléctrico y su representación ante el mercado, mediante una gestión altamente tecnificada orientada a optimizar el rendimiento de sus instalaciones”, ha declarado Santiago Gómez Ramos, director de ACCIONA Green Energy.

Santxo Laspalas, director de Control de Operaciones de ACCIONA Energía, ha expresado por su parte su satisfacción por estos nuevos contratos, “que confirman la alta competitividad y eficiencia de este centro de control en la gestión de instalaciones renovables en cualquier parte del mundo”.

CECOER

Situado en la sede de ACCIONA Energía en Sarriguren (Navarra) y con delegaciones en Chicago y Ciudad de México, el CECOER gestiona en tiempo real el funcionamiento de 294 parques eólicos, con 7.892 aerogeneradores de 13 fabricantes y más de 50 modelos diferentes.

Gestiona asimismo 80 centrales hidroeléctricas, 24 plantas fotovoltaicas, 6 centrales termosolares, 5 plantas de biomasa y 269 subestaciones de transformación, repartidas por 18 países de los cinco continentes. Realiza funciones esenciales para el correcto funcionamiento de las instalaciones supervisadas y la integración de la energía de origen renovable en el sistema eléctrico.

En el caso de España, envía datos en tiempo real a Red Eléctrica de España (REE) sobre la energía producida en cada momento y la previsión de producción en las horas siguientes –entre otros parámetros técnicos-, y atiende las consignas y requisitos de operación emitidas por el operador del sistema para mantener la estabilidad de la red.

También posibilita la gestión de la oferta y venta de energía al mercado eléctrico mayorista y detecta de forma inmediata las incidencias que se puedan producir en las instalaciones supervisadas, solucionando en remoto el 55% de ellas.

 Fuente: energynews

Etiquetas:

Biorrefinería multifuncional: Múltiples bioproductos a partir de residuos de poda y limpieza de jardines. Proyecto BIO_LIGWASTE

Autor: Enrique Cubas-Instituto IMDEA Energía

La limpieza y poda de jardines genera una gran cantidad de residuos, llegando incluso a alcanzar valores de 1,5 kg/m2 de zona verde. Tradicionalmente, los residuos de poda y limpieza de jardines han terminado depositados en vertederos o se han destinado a la producción de compost o material bioestabilizado, los cuales tienen un bajo valor añadido y un mercado muy reducido. Por ello, una atractiva alternativa para el aprovechamiento de este residuo rico en materia orgánica es la producción de biocombustibles y bioproductos de alto valor añadido en una biorrefinería.

En ese contexto, el objetivo del proyecto BIO_LIGWASTE es estudiar la valorización de los residuos generados en la limpieza de parques y jardines para producir bioetanol y otros bioproductos como el ácido láctico y el bio-oil.

Debido a la naturaleza recalcitrante de esta biomasa, es necesaria la aplicación de un pretratamiento en el proceso de producción. Como resultado del pretratamiento, se genera una fracción sólida que contiene la celulosa y la lignina, y una fracción líquida rica en xilosa y compuestos de degradación. La fracción celulósica del material se aprovechará para la producción de bioetanol a través de un proceso de fermentación alcohólica. Para ello, las levaduras consumirán la glucosa liberada en la hidrólisis enzimática por la acción de las enzimas celulolíticas. A la fracción de lignina, la cual no es fermentable, se le aplicará un tratamiento de pirólisis rápida catalítica para la obtención de un bio-oil. Por otro lado, la fracción hemicelulósica rica en xilosa, se empleará en la producción bacteriana de ácido láctico.

 

El bioetanol lignocelulósico presenta una reducción neta de emisiones de CO2 respecto a los carburantes de origen fósil y a los biocombustibles procedentes de materias amiláceas y azucaradas. Además, su producción no supone competencia en el uso del suelo y recursos agrícolas con el mercado alimentario. Este combustible es compatible con las infraestructuras actuales y su adición para la formulación de mezclas con gasolina es muy recomendable e incluso está legislado como obligatorio en ciertos países. El bio-oil se puede emplear como biocombustible y como fuente de productos aromáticos. Por último, el ácido láctico presenta un gran interés en la actualidad debido a sus múltiples aplicaciones. Se utiliza como conservante en la industria alimentaria, como emulsificante en la industria farmacéutica y cosmética y, sobre todo, como building block para la producción de sustancias químicas y de materiales biodegradables como el ácido poliláctico.

Como promueve el programa RETOS-COLABORACIÓN del Ministerio de Economía y Competitividad, en el proyecto BIO_LIGWASTE se hace patente la cooperación entre empresas y centros públicos de investigación. Por ello, entre los integrantes del consorcio, se encuentran TETma (Técnicas y Tratamientos Medioambientales), coordinador del proyecto y empresa líder en el sector de gestión de Residuos Sólidos Urbanos; centreVERD, empresa dedicada al sector de la jardinería; CIEMAT, organismo público de investigación; e IMDEA Energía, centro de investigación del gobierno regional de la Comunidad de Madrid que realiza actividades de I+D relacionadas con la energía.

El éxito de este proyecto permitirá validar el concepto de biorrefinería multifuncional con residuos de poda, además de la puesta a punto de un sistema de tratamiento de residuos capaz de procesar 10.000 toneladas al año, generando energía limpia y materiales avanzados.

Etiquetas:

Centrales solares basadas en receptores de partículas ¿El futuro de la CSP?

Autor: Miguel A. Reyes-Instituto IMDEA Energía

Actualmente el 23.7% de la energía eléctrica total producida a nivel mundial es de origen renovable frente al 76.3% producida por fuentes no renovables [1]. En este balance de energía global, el 1.2% es producido mediante energía solar fotovoltaica mientras que el 0.4% lo comparten la energía geotérmica, la solar de concentración CSP y la de los océanos (figura 1).

Figura 1. Distribución en la producción de energía eléctrica durante el año 2015 [1]

A pesar de la todavía escasa contribución de la energía solar y en especial de la CSP al mix del mercado energético global, está probado que la energía del sol es una fuente inagotable capaz de cubrir la totalidad de las necesidades energéticas del planeta con las tecnologías actuales. Una de las principales preocupaciones de IMDEA Energía y en concreto de su Unidad de Procesos a Alta Temperatura es el estudio y mejora de los sistemas de energía solar concentrada (CSP) con el fin de mejorar su eficiencia y competitividad. En este contexto, IMDEA Energía está investigando activamente en la utilización de lechos fluidizados de partículas para su aplicación en centrales CSP para el almacenamiento y el sistema de receptor central (figura 2).

Figura 2. Esquema de una planta CSP utilizando lecho fluidizado de partículas como fluido térmico en el receptor y sistema de almacenamiento

La utilización de lechos fluidizados de partículas en las centrales CSP de torre presenta multitud de ventajas frente a los fluidos térmicos y de almacenamiento convencionales (sales fundidas, aceite térmico o vapor):

  • Se pueden alcanzar temperaturas muy elevadas (1,000 ºC)
  • No existe riesgo de congelación por temperaturas bajas (sales fundidas)
  • Facilidad de transporte
  • Facilidad de almacenamiento
  • Bajo coste

Sin embargo, la utilización de lechos fluidizados todavía presenta algunos retos en los que IMDEA Energía está trabajando actualmente:

  • Diseño de intercambiadores de calor basados en lechos fluidizados (para el intercambio térmico entre las partículas y los fluidos de trabajo)
  • Diseño de reactores solares indirectamente irradiados
  • Estudios de integración para plantas CSP basadas en lechos fluidizados

Estos retos se están abordando desde las perspectivas experimental y numérica a través de diferentes proyectos de investigación como CSP2 [3], STAGE-STE [4], NEXT-CSP [5] o ARROPAR-CEX [6].

 

[1]       REN21 Renewable Energy Policy Network for the 21st Century. Renewables 2016. Global Status Report. 2016.

[2]        Spelling J, Gallo A, Romero M, González-Aguilar J. A High-efficiency Solar Thermal Power Plant using a Dense Particle Suspension as the Heat Transfer Fluid. Energy Procedia 2015; 69:1160–70. doi:10.1016/j.egypro.2015.03.191.

[3]        Concentrated Solar Power in Particles European Project CSP2. European Commission. 2015. http://www.csp2-project.eu/

[4]        STAGE-STE EERA – European Energy Research Alliance. http://www.stage-ste.eu/

[5]        Home – Next-CSP. http://next-csp.eu/

[6]        ARROPAR-CEX: http://www.energia.imdea.org/investigacion/proyectos/arropar-cex

Etiquetas: