Archivo de autor

SunDial: Diseño de un nuevo colector solar de concentración

Autores:

  • Rubén Abbas, Javier Muñoz-Antón, Luis F. González-Portillo, Andrés Sebastián, José Mª Martínez-Val, Universidad Politécnica de Madrid
  • Javier Cano Nogueras, Fundación para el Fomento de la Innovación Industrial
  • Antonio Rovira, María J. Montes, Universidad Nacional de Educación a Distancia

La descarbonización de la economía mundial requiere no solo esfuerzos en la penetración de las fuentes renovables en la generación eléctrica y en el transporte, sino también esfuerzos hacia fuentes renovables en el sector industrial. En este sentido, Unión Europea ha sido líder en el uso de calor solar para procesos industriales (SHIP)1, pero siempre con temperaturas inferiores a 150ºC. Sin embargo, una gran parte de la demanda térmico del sector industrial es a temperaturas bien superiores a los 150ºC, como se muestra en la Fig. 1.

Figura 1: Diferentes tecnologías SHIP para diferentes aplicaciones industriales en función del rango de temperaturas requerido.

Se puede observar que, si bien los colectores estacionarios son válidos para temperaturas inferiores de 100ºC, demandas energéticas a partir de 150ºC requiere de concentradores con seguimiento, principalmente lineales. La experiencia adquirida durante el desarrollo de la Electricidad Termo-solar de Concentración ha hecho que en los pocos proyectos existentes de SHIP se hayan usado concentradores muy similares. Sin embargo, para rangos de temperatura de entre 150ºC y 300ºC no es necesario el uso de tecnologías que son capaces de concentrar más de 60 soles. Por ello se ha llevado a cabo el diseño de un concentrador lineal basado en el reflector lineal Fresnel, con el objetivo de minimizar costes para las características térmicas solicitadas: el SunDIAL.

Diseño de SunDIAL

SunDIAL es una tecnología basada en varias patentes españolas (ES2596294B2, ES2345427B2 y ES2537607B2). Su concepto consiste en un concentrador lineal Fresnel de espejos fijos instalado sobre una plataforma rotativa, que sigue al sol de forma que esta que este se mantiene siempre en el plano de simetría del concentrador, ver Fig. 2. De esta forma, no es necesario un seguimiento individualizado de cada uno de los espejos y se simplifica la estructura del concentrador Fresnel.

Figura 2: Principio de funcionamiento de SunDIAL.

Un pequeño prototipo de este concepto ha sido construido en TecnoGETAFE para su demostración óptica. En dicho prototipo el concentrador descansa sobre una plataforma construida originalmente para un ring rotatorio de artes marciales, que disponía de un cojinete axial central. A este sistema se le añadieron dos filas de ruedas de nylon, estando dos de estas ruedas actuadas por dos motores eléctricos con reductoras 1600 a 1. De cara a la minimización del coste del prototipo, el seguimiento del sol se realizada mediante dos fotodiodos una placa situada en el plano de simetría, de forma que la plataforma se pone en movimiento cuando uno de los fotodiodos se encuentra a la sombra.

En cuanto a la superficie reflectante, anteriores estudios han demostrado que el uso de espejos curvos es necesario de cara a obtener rendimientos ópticos concentraciones relativamente altos con un número limitado de espejos3. Sin embargo, la adquisición de espejos curvos con curvaturas específicas conlleva un alto coste. Por ello, se ha ideado un mecanismo para instalación de espejos curvos a partir de espejos planos finos. Esto consiste en la aplicación de un par igual y de sentido contrario en los extremos laterales de un espejo, lo que le dota de una forma parabólica si el efecto de dicho par es significativamente mayor al efecto de la gravedad. En la imagen derecha de la Fig. 3 se puede observar cómo un espejo de 1 m de anchura es capaz de concentrar sobre una línea fina, lo que demuestra el óptimo funcionamiento del sistema. Obsérvese que la parte final de la imagen reflejada no está concentrada, pues las últimas pinzas se dejaron sueltas de cara a comprobar su efecto. 

Figura 3: Sistema de doblado de espejos (izquierda) y ensayo de comprobación visual de la concentración obtenida mediante el procedimiento patentado (derecha).

ASTEP: un proyecto europeo para el desarrollo de la tecnología

El sistema desarrollado hasta ahora se encuentra en un TRL3 en la actualidad. Sin embargo, en mayo comenzará un proyecto H2020 basado en el presente concepto que tiene como objetivo el desarrollo de la tecnología hasta un TRL5. Para ello, se construirán dos prototipos que serán instalados en dos industrias muy diferentes a latitudes diferentes: una fábrica de productos lácteos en Grecia y una fábrica de tubos de acero de ArcelorMittal en Rumanía.

Referencias

https://www.nrel.gov/docs/fy16osti/64709.pdf

2 P. F. I. Horta, “Technical Report A.1.3: Process Heat Collectors: State of the Art and available medium temperature collectors,” 2015.

3 Abbas, R; Muñoz-Antón, J; Valdés, M; Martínez-Val, JM; High concentration linear Fresnel reflectors, Energy Conversion and Management,72,60-68,2013, Pergamon

Contacto

Rubén Abbas, Investigador del Grupo UPM-GIT del Programa ACES2030-CM, rubenabbas@etsii.upm.es

Coordina ACES2030-CM: Manuel Romero Álvarez. IMDEA Energía

Etiquetas:

La luz visible desbloquea el acceso a fragmentos farmacológicamente relevantes

Autores: Alberto F. Garrido-Castro, M. Carmen Maestro y José Alemán

Resumen: El grupo difluorometilo (-CF2H) es un fragmento crucial en los ámbitos farmacéutico, agroquímico y de materiales. Sin embargo, la difluorometilación de enlaces C=N se ha descrito usando metodologías polares indirectas que presentan aplicabilidad restringida. Por ello, con el fin de desarrollar un protocolo directo para completar esta transformación, se ha llevado a cabo la adición directa del radical difluorometilo (•CF2H) a enlaces C=N basada en una activación fotocatalítica con luz visible. Las condiciones suaves de reacción dan lugar a una amplia diversidad estructural, llegando a funcionalizar quinoxalinonas y dibenzoacepinas, entre otros.

Abstract: The difluoromethyl (-CF2H) group represents a crucial moiety in pharmaceutical, agrochemical and material science. However, difluoromethyl addition to the C=N bond typically relies on multi-step two-electron approaches of restricted range and applicability. In an attempt to develop a direct protocol to complete this transformation, the current study presents a direct CF2H radical addition to C=N bonds predicated on photocatalytic activation using visible light. The mild conditions in place lead to impressive structural diversity, as quinoxalinones and dibenzazepines, among others, are successfully functionalized.

Se ha desarrollado una nueva metodología basada en el uso de la luz visible para preparar compuestos que presentan el grupo difluorometilo (-CF2H) de alta importancia en el sector farmacéutico.

El flúor es el halógeno más abundante sobre la Tierra y, sin embargo, ha tenido un papel insignificante durante la biosíntesis natural de moléculas orgánicas. Pese a la escasez de compuestos organofluorados en la Naturaleza, la sociedad química ha descubierto y explotado las propiedades únicas de estos compuestos durante décadas. Así, la química en los ámbitos farmacéutico, agrícola y de materiales se ha beneficiado de una gran variedad de estrategias innovadoras para incorporar flúor.

En el contexto del descubrimiento y desarrollo de fármacos, la instalación de grupos fluorometilo (-CFxHy) en moléculas orgánicas ha recibido una atención significativa. Más del 20% de los fármacos comercializados contiene al menos un átomo de flúor en su estructura. Esto se debe a que los compuestos fluoroalquilados suelen presentar una absorción y biodisponibilidad superior debido a: i) una mayor lipofilia que sus análogos no fluorados, lo cual lleva a una mejor permeabilidad a través de las membranas; ii) una gran resistencia frente a oxidaciones, resultando en una elevada estabilidad metabólica, y iii) una selectividad de unión a proteínas mejorada. Concretamente, el grupo difluorometilo (-CF2H) puede ser un isóstero de dadores de enlace de hidrógeno tradicionales como los alcoholes, tioles o ácidos hidroxámicos.

Generación del radical •CF2H y adición directa a una gran variedad de enlaces C=N

Debido a la gran dificultad que existe para llevar a cabo la adición del grupo -CF2H de manera directa a compuestos de tipo imina (enlace C=N), se ha desarrollado una nueva metodología que permite acceder a aminas α-difluorometiladas. La síntesis de estas importantes estructuras únicamente se había conseguido mediante estrategias polares empleando varias etapas de reacción. Gracias al uso de la fotocatálisis con luz visible (LEDs azules), se ha podido llevar a cabo la transformación de manera directa con esta nueva metodología radicalaria.

El protocolo descrito está basado en la activación fotocatalítica de un precursor del radical difluorometilo (·CF2H); una sal de elevada disponibilidad comercial y manejo experimental sencillo que es la base de una metodología de fácil ejecución. La reacción se puede llevar a cabo bajo unas condiciones de reacción suaves que dotan a la misma de una gran flexibilidad y variedad estructural, llegando a funcionalizar compuestos de un carácter muy variado como las quinoxalinonas, de gran actividad antimicrobiana, antiviral y antitumoral, y las dibenzoacepinas, conocidas como los antipsicóticos de segunda generación.

Referencia bibliográfica:

Garrido-Castro, A. F.; Gini, A.; Maestro, M. C.; Alemán, J. “Unlocking the Direct Photocatalytic Difluoromethylation of C=N BondsChem. Commun. 2020, Advance Article. DOI: 10.1039/D0CC01353F.

Contacto

José Alemán, Responsable del Grupo FRUAM del Programa FotoArt-CM – jose.aleman@uam.es

Coordina FotoArt-CM: Víctor A. de la Peña O´Shea, Instituto IMDEA Energía.

Etiquetas:
Categorias: General

Integrando la tecnología termosolar en tratamiento térmico de áridos

Autores: Sebastián Taramona Fernández, Jesús Gómez Hernández y Domingo Santana

Los ambiciosos objetivos de descarbonización del sistema energético fijados por la Comisión Europea implican que será necesario disponer de tecnologías renovables económicamente viables en un horizonte cercano. Así, será posible sustituir las actuales tecnologías basadas en combustibles fósiles, permitiendo la integración de la tecnología termosolar con la industria.

En el ámbito de las tecnologías renovables, lo primero que surge en la mente son los parques eólicos o los paneles fotovoltaicos, ya que son las tecnologías que más desarrollo han tenido en la última década. Sin embargo, existen muchas otras tecnologías menos conocidas, entre las que se encuentran las plantas termosolares, que se basan en la concentración de la radiación solar en un receptor.

Diseño del campo solar lineal Beam-down y del receptor de partículas

Nuestra tecnología propone un nuevo enfoque para conseguir tratar térmicamente partículas o áridos en receptores solares. Para ello, se redirecciona la concentración sobre el receptor, que estará instalado en el suelo. Como se puede ver en la imagen, se emplean espejos Fresnel como campo solar primario, y una segunda reflexión como campo solar secundario. El reflector secundario debe ser hiperbólico, ya que esta forma geométrica permite redirigir todos los rayos apuntados al primer foco, hacia el segundo foco, que será ubicado junto con el receptor.

Figura 1. Campo solar lineal Beam-down. Todas las dimensiones están en cm.

Este campo solar fue estudiado por los autores estudian en [1], donde se analiza la influencia del empleo de espejos primarios completamente planos o con una ligera curvatura. Para una posición de los espejos primarios fija, la excentricidad de la hipérbola que describe el reflector secundario modifica en gran medida la concentración solar conseguida en el receptor. En este sentido, la Figura 2 muestra la concentración solar sobre el receptor, representado como QBD en la Figura 1.

 

Figura 2. Concentración solar sobre el receptor de partículas para: (a) espejos completamente planos y (b) espejos con curvatura.

El receptor solar recibirá la radiación verticalmente, que servirá para calentar partículas. Estas partículas se pueden utilizar como medio de almacenamiento térmico, o se pueden integrar en un proceso de tratamiento de materiales para conseguir unas propiedades deseadas. Ente las potenciales aplicaciones estaría el secado y/o la calcinación de áridos.

En la Figura 3 se muestra el diseño de receptor solar de lecho fluidizado, en donde se promueve la recirculación de los gases de fluidización entre lechos mientras se consigue el movimiento horizontal de las partículas. En esta imagen, los espejos primarios (LFR, Linear Fresnel Reflector) redirigen los rayos solares al reflector secundario (LBD, Linear Beam-Down) hacia el receptor solar (LPSR, Linear Particle Solar Receiver). Por otro lado, el aire de fluidización se consigue mediante un compresor de aire. De esta forma, la mezcla de aire y partículas se comportará como un fluido, es decir, como un lecho fluidizado, y se irá calentando progresivamente en el receptor solar.

Figura 3. Esquema del campo de heliostatos y del receptor solar.

Acciones futuras

En primer lugar, se espera incrementar el atractivo de los campos solares de tipo Fresnel: al aumentar los rendimientos y mantener los costes lo más bajos posibles, se pretende aumentar la competitividad de este tipo de instalaciones.

Finalmente se espera generar una disminución de las emisiones de CO2, primero por la adopción de esta tecnología en el ámbito de la generación eléctrica, y en segundo lugar por la sustitución de los hornos rotativos de secado, que utilizan calderas convencionales, por campos de secado termosolares.

Referencias

[1] Gómez-Hernández, J., González-Gómez, P., Briongos, J. and Santana, D. (2020). Technical feasibility analysis of a linear particle solar receiver. [online] Madrid. Available at: https://doi.org/10.1016/j.solener.2019.11.052

[Accessed 21 Feb. 2020].

Contacto

Domingo J. Santana, Responsable del Grupo UC3M-ISE (Universidad Carlos III de Madrid) del Programa ACES2030-CM dsantana@ing.uc3m.es

Coordina ACES2030-CM: Manuel Romero Álvarez. IMDEA Energía

Etiquetas:
Categorias: General

Rutas alternativas para la fabricación de nanopartículas con aplicaciones en catálisis

Autor: Lidia Martínez, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Las nanopartículas son objetos de tamaño nanométrico (típicamente de 1 a 100 nm) que, debido a sus reducidas dimensiones, tienen un número de átomos en superficie del mismo orden o incluso superior al número de átomos de volumen. Esto hace que las propiedades de un material cambien significativamente cuando está en la nanoescala. Un claro ejemplo de ello es el oro, un material ampliamente conocido por su característico color amarillo y por ser inerte tal y como lo conocemos en nuestra vida cotidiana. Pues bien, cuando lo reducimos a la escala nanométrica, su coloración cambia en función del tamaño, pudiendo ser morado, naranja o rojo. Esto se debe a un cambio en sus propiedades ópticas (como curiosidad, las vidrieras son un ejemplo de utilización de nanopartículas de Au y Ag como impurezas). Además, en la nanoescala el oro pasa de ser un material inerte a un buen catalizador del monóxido de carbono.

Un catalizador en la nanoescala ofrece la ventaja de maximizar por tanto el área superficial, aumentando en número de sitios activos, a la vez que se minimiza la carga de catalizador. Esto puede ser crucial cuando se usan catalizadores basados en metales nobles y escasos, ya que implica un ahorro en  costes significativo. Tradicionalmente los catalizadores se sintetizan por vía química. Estos métodos ofrecen un control preciso de la composición y el tamaño de las nanopartículas, pero conllevan el uso de agentes químicos que (i) en ocasiones no son amigables con el medioambiente y (ii) deben ser correctamente eliminados tras el proceso de fabricación para que no altere las prestaciones del catalizador. Existe otra ruta de síntesis que puede representar una alternativa complementaria a estos métodos: la síntesis de nanopartículas en fase gas. Éstos son métodos libres de ligandos y, por tanto, más cercanos a una síntesis verde amigable con el medioambiente. Además, estas técnicas permiten realizar de manera precisa estudios modelo con pequeños agregados de 0.5 a 2 nm (< 200 átomos), donde hay una rápida evolución de la estructura atómica y electrónica [Vadja and White, 2015]. Estas técnicas se basan en la generación de un vapor sobresaturado (habitualmente de un metal con un gas inerte) que da lugar a una condensación y coalescencia de los átomos metálicos para formar nanopartículas. Dentro de las múltiples variantes que ofrecen estos métodos, los basados en la pulverización catódica (“magnetron sputtering”), son los que ofrecen una mayor proyección para aplicaciones donde tengan que generarse grandes cantidades de nanopartículas.  Con esta técnica se han reportado, por ejemplo, estudios donde una única nanopartícula de paladio actúa como nanoportal, haciendo de electrodo de una reacción electroquímica [Datta et al.2019], o estudios con nanopartículas de aluminio donde, gracias a su resonancia de plasmón localizado en el ultravioleta, produce un aumento de la eficiencia fotocatalítica del óxido de titanio [Ghori et al., 2018]. En definitiva, este método de fabricación proporciona una plataforma idónea de fabricación de sistemas ultra-puros en ultra-alto vacío, fundamentales para estudiar las propiedades de los materiales en la nanoescala.

En el Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), hemos desarrollado un sistema multi-magnetrón que representa una evolución de este método de fabricación, al aportar una versatilidad en cuanto a la elección no sólo de la composición, sino también de la estructura de las partículas, pudiendo por ejemplo elegir entre combinaciones de elementos que estén aleados [Martínez et al, 2012] o en capas [Llamosa et al., 2014]. Hace unos años realizamos un escalado de este equipo para lograr altos flujos de nanopartículas, manteniendo la versatilidad estructural que ofrece el diseño original [Martínez at al., 2018]. Este equipo es el corazón de Stardust, un sistema experimental único en el mundo que se ha desarrollado en el contexto del proyecto Europeo ERC Synergy grant NANOCOSMOS, para simular en el laboratorio la formación de polvo cósmico y su evolución hacia el medio interestelar [Martínez et al, 2019]. Más allá del campo de la astrofísica de laboratorio, Stardust ofrece unas posibilidades únicas de adentrarnos en la síntesis de nanopartículas con distintas estructuras para aplicaciones en catálisis, que queremos explorar en el contexto del proyecto FotoArt-CM.

Adaptado de Palmer (2018)

Referencias

Datta A., Porkovich A. J., Kumar P., Nikoulis G., Kioseoglou J., T. Sasaki, Steinhauer S., Grammatikopoulos P., Sowwan M. (2019) Single Nanoparticle Activities in Ensemble: A Study on Pd Cluster Nanoportals for Electrochemical Oxygen Evolution Reaction, J. Phys. Chem. C, 123 (43) 26124-26135.

Ghori M. Z., Veziroglu S., Hinz A., Shurtleff B. B., Polonskyi O., Strunskus T., Adam J., Faupel F., Aktas O. C. (2018), Role of UV Plasmonics in the Photocatalytic Performance of TiO2 Decorated with Aluminum Nanoparticles, ACS Appl. Nano Mater. 1 (8) 3760-3764.

Llamosa D., Ruano M., Martínez L., Mayoral A., Roman E., García-Hernández M., Huttel Y. (2014), The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles, Nanoscale, 6, 13483-13486.

Martínez L., Díaz M., Román E., Ruano M., Llamosa D., Huttel Y. (2012) Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances, Langmuir, 28 (30) 11241-11249.

Martínez L., Lauwaet K., Santoro G., Sobrado J.M., Peláez R.J., Herrero V.J., Tanarro I., Ellis G., Cernicharo J., Joblin C., Huttel Y., Martín-Gago J.A. (2018), Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles, Scientific Reports, 8,  7250.

Martínez, L., Santoro, G., Merino, P., Accolla M., Lauwaet K., Sobrado J., Sabbah H., Pelaez R. J., Herrero V. J., Tanarro I., Agúndez M., Martín-Jimenez A., Otero R., Ellis G. J., Joblin C., Cernicharo J. and Martín-Gago J. A. (2019) Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nat. Astron., doi:10.1038/s41550-019-0899-4.

Palmer R. E., Cai R., Vernieres J. (2018), Synthesis without Solvents: The Cluster (Nanoparticle) Beam Route to Catalysts and Sensors, Acc. Chem. Res., 51 (9) 2296-2304.

Vadja S., White M. G. (2015) Catalysis Applications of Size-Selected Cluster Deposition, ACS Catalysis, 5, 7152-7176.

Contacto

Jose Ángel Martín Gago, Responsable de Grupo ESISNA del Programa FotoArt-CM.– gago@icmm.csic.es

Coordina FotoArt-CM: Víctor A. de la Peña O´Shea, Instituto IMDEA Energía.

Etiquetas:
Categorias: General

Plantas termosolares supercríticas para un futuro energético sostenible

Autores: María José Montes (UNED, Dpto de Ingeniería Energética) y José Ignacio Linares (Universidad Pontificia Comillas – ICAI)

Resumen

La competitividad de la energía solar térmica de concentración, frente a otras fuentes de energía, se puede alcanzar por dos vías: a base de reducir costes en la aportación de calor a procesos industriales, o bien, aumentando el rendimiento y la fiabilidad de las plantas termosolares orientadas a la producción de electricidad. Este artículo se refiere a estas plantas termosolares de mayor rendimiento; en concreto, la configuración que se va a estudiar es la de receptor central de sales fundidas con almacenamiento térmico asociado, acoplado a un ciclo supercrítico de CO2 para la producción de electricidad. Aunque, como se explicará a continuación, este tipo de ciclos presenta unos rendimientos muy altos, todavía quedan muchos interrogantes tecnológicos que son necesarios solventar para la viabilidad técnica de estas plantas. Este artículo se focaliza en el intercambio de calor entre las sales fundidas y el CO2 supercrítico, proponiendo una solución para que dicho intercambio sea técnicamente posible.

Abstract

The competitiveness of concentrating solar thermal energy, compared to other renewable energies, can be achieved by two ways: a decrease of the investment cost in the supply of process heat to the industry; or increasing the performance and reliability of solar thermal power plants for electricity production. This article is focused on this last alternative; in particular, it is analyzed the configuration based on central receiver working with molten salts, and a thermal energy storage associated, coupled to a supercritical cycle of CO2, to produce electricity. Although this scheme has a very high thermal efficiency, there are several technologic challenges to overcome for the technical viability of these plants. This work deals in deep with the heat transfer from the molten salts in the solar field to the sCO2 in the cycle, proposing a solution to this heat exchanger.

Artículo

Las plantas termosolares supercríticas buscan aumentar el rendimiento global en la producción de electricidad a partir de energía solar concentrada, mediante el acoplamiento de un receptor central a un ciclo de potencia supercrítico. El esquema que actualmente parece más viable es el de receptor central de sales fundidas acoplado a ciclo Brayton de CO2 supercrítico (sCO2), tal y como se muestra en la figura 1.

Figura 1. Esquema global de planta termosolar de receptor central de sales fundidas acoplada a ciclo de CO2 supercrítico

Sin embargo, existen todavía varios interrogantes tecnológicos que deben ser respondidos para el desarrollo de estas plantas. Entre otros, se ha identificado como un elemento clave el intercambiador de calor entre la sal fundida que proviene del campo solar, a alta temperatura (700ºC aproximadamente) y presión moderada, y el CO2 supercrítico, a presiones por encima de los 200 bar. Las condiciones de trabajo de este intercambiador, por la elevada temperatura y, sobre todo, por la diferencia de presiones, hace indispensable un nuevo diseño que sea fiable y eficiente; los intercambiadores de calor convencionales de carcasa y tubos presentan un funcionamiento limitado a partir de 200 bar; y la viscosidad de las sales fundidas pone en entredicho el uso de los intercambiadores de circuito impreso (conocidos en inglés como Printed Circuit Heat Exchanger, PCHE) , debido a sus canales pequeños, con diámetros aproximados de 2 mm.

Desde el grupo UNED-STEM, en colaboración con la Universidad Pontificia Comillas, se ha propuesto una solución de compromiso mediante el desarrollo de un ciclo supercrítico que permite que el aporte de calor de la fuente principal se pueda realizar a la salida de la turbina (figura 2b), de tal forma que la presión del sCO2 en ese punto es aproximadamente de 85 bar, sensiblemente inferior a los 200 bar en un ciclo supercrítico de recompresión convencional (figura 2a).

a) Ciclo supercrítico de recompresión convencional (RC)

b) Nuevo ciclo supercrítico con aporte de calor principal a la salida de la turbina (RC-LP)

Figura 2. Ciclo de recompresión convencional (a) y nuevo (b)

En el trabajo desarrollado hasta el momento, se proponen tres variantes de este nuevo ciclo: ciclo de recompresión con alimentación en baja y refrigerado por agua (RC-LP-wet_cooling), como el mostrado en la figura 2b; ciclo de recompresión con alimentación en baja, refrigerado por agua y con recalentamiento (RC-RH-LP-wet_cooling); y ciclo de recompresión con alimentación en baja, refrigerado por aire, con recalentamiento y refrigeración intermedia (RC-IC-RH-LP-dry_cooling). Se ha realizado un análisis detallado del funcionamiento de una planta termosolar completa basada en cada una de estas tres configuraciones; estimándose, asimismo, la inversión de cada una de ellas.

De esta manera, se ha podido comprobar que, en todas las configuraciones propuestas, el rendimiento del ciclo de potencia excede el 50% (51.37%-54.64%-52.56%). Aunque la inclusión del recalentamiento mejora el rendimiento, disminuye el salto térmico de la sal, lo cual aumenta el volumen de almacenamiento. Respecto al análisis económico, se puede concluir que la inversión es parecida en todas las configuraciones, aunque la inversión en el esquema RC-LP es menor que en RC-RH-LP, y menor a su vez que en RC-IC-RH-LP, motivado por la menor inversión en turbomáquinas y el menor volumen de sal fundida (salto térmico mayor). El coste de la electricidad cumple con los objetivos del Gen3 Roadmap.

Los resultados obtenidos, en términos económicos y de rendimiento son muy buenos, lo que sitúa esta nueva configuración como una solución de compromiso para la viabilidad técnica de las futuras plantas termosolares con CO2 supercrítico.

Se puede encontrar más información en el artículo:

A NOVEL SUPERCRITICAL CO2 RECOMPRESSION BRAYTON POWER CYCLE FOR POWER TOWER CONCENTRATING SOLAR PLANTS

(https://doi.org/10.1016/j.apenergy.2020.114644)

Autores: J.I. Linares (COMILLAS), M.J. Montes (UNED), A. Cantizano (COMILLAS), C. Sánchez (UNED)

Disponible online en Applied Energy:
https://www.sciencedirect.com/science/article/pii/S0306261920301562

 

Contacto

María José Montes, Investigadora principal grupo UNED-STEM en ACES2030-CM – mjmontes@ind.uned.es

José Ignacio Linares, Catedrático Universidad Pontificia Comillas – ICAI – linares@comillas.edu

Etiquetas:

Fabricación aditiva – Receptores volumétricos avanzados mediante impresión 3D

Autor: David D’Souza, Unidad de Procesos de Alta Temperatura, IMDEA Energía

En tecnologías termosolares, el receptor solar es el dispositivo que recoge la energía solar concentrada y la transfiere en forma de energía térmica a un fluido de trabajo (como agua/vapor, sales fundidas, aire entre otros). El concepto de receptor volumétrico consiste en una matriz sólida que permite el paso de la luz solar y de una corriente de un fluido (generalmente aire) y en donde la primera se absorbe progresivamente por la matriz, la cual calienta el fluido [1], [2]. Una geometría optimizada resulta entonces esencial para obtener una elevada eficiencia térmica, estabilidad de la corriente del fluido, alta temperatura de salida del fluido y absorción solar, así como bajas pérdidas térmicas y pérdidas de carga [1]-[9].

Figura 1: Muestras de absorbedores volumétricos fabricados por impresión 3D (SLM) en acero inoxidable [11]

Figura 2: Absorbedor fabricado por fusión selectiva de haces de electrones  (EBSM) en aleación de titanio y Aluminio (Ti6Al4V) [7]

La fabricación aditiva ofrece ventajas únicas en el desarrollo de receptores volumétricos para aplicaciones termosolares [10]-[12]. Permite obtener geometrías con mayor nivel de complejidad y en tiempos más cortos que los métodos de fabricación tradicionales. Su uso en prototipado es bien conocida, facilitando las etapas de desarrollo y ensayo.

Si bien existen restricciones en cuanto al tamaño mínimo de una capa obtenida por fabricación aditiva, que suele surgir al reducir al mínimo el espesor de la pared del canal y depende de la técnica de fabricación utilizada; este sigue estando muy por debajo del límite dictado por las técnicas de fabricación tradicionales [7].

Secuencialmente, una vía de desarrollo convencional de un nuevo concepto de absorbedor comienza con la modelización y simulación numérica, continua con la experimentación de pequeños prototipos y la experimentación a mayor escala y, por último, la experimentación en condiciones reales de operación (En este caso, empleando radiación solar) [1]. La fabricación aditiva puede, en principio, utilizarse para desarrollar el prototipo en las tres últimas fases experimentales y facilitar el escalado de estos dispositivos hacia Niveles de Desarrollo Tecnológico (Technology Readness level o TRLs) más elevados.

En cuanto a los materiales, la fabricación aditiva puede aplicarse en la construcción de absorbedores tanto metálicos como cerámicos. Así, se han construido y experimentado prototipos en acero inoxidable (AISI 316L) [12] y aleaciones de aluminio y titanio (Ti6Al4V) [7] utilizando las técnicas de  fusión selectiva por láser (o SLM, Selected laser melting) y la fusión selectiva por haz de electrones (o EBM, Electron Beam Melting), respectivamente. Otros metales adecuados para operación a muy altas temperaturas, como el Inconel 625, también puede utilizarse como material de fabricación [12], [13]. En el caso de absorbedores cerámicos, se han aplicado técnicas convencionales, especialmente la estereolitografía (SL) [15], [16], y se considera que en breve las impresión 3D se adapten a la producción de absorbedores cerámicos con materiales tales como el carburo de silicio SiC [17].

Referencias:

[1]       A. L. Ávila-Marín, ‘Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review’, Sol. Energy, vol. 85, no. 5, pp. 891–910, May 2011, doi: 10.1016/j.solener.2011.02.002.

[2]       F. Gomez-Garcia, J. González-Aguilar, G. Olalde, and M. Romero, ‘Thermal and hydrodynamic behavior of ceramic volumetric absorbers for central receiver solar power plants: A review’, Renew. Sustain. Energy Rev., vol. 57, pp. 648–658, May 2016, doi: 10.1016/j.rser.2015.12.106.

[3]       C. Pabst et al., ‘Experimental performance of an advanced metal volumetric air receiver for Solar Towers’, Renew. Energy, vol. 106, pp. 91–98, Jun. 2017, doi: 10.1016/j.renene.2017.01.016.

[4]       R. Capuano et al., ‘Numerical models of advanced ceramic absorbers for volumetric solar receivers’, Renew. Sustain. Energy Rev., vol. 58, pp. 656–665, May 2016, doi: 10.1016/j.rser.2015.12.068.

[5]       Th. Fend, P. Schwarzbözl, O. Smirnova, D. Schöllgen, and C. Jakob, ‘Numerical investigation of flow and heat transfer in a volumetric solar receiver’, Renew. Energy, vol. 60, pp. 655–661, Dec. 2013, doi: 10.1016/j.renene.2013.06.001.

[6]       M. Nakakura, K. Matsubara, S. Bellan, and T. Kodama, ‘Direct simulation of a volumetric solar receiver with different cell sizes at high outlet temperatures (1,000–1,500 °C)’, Renew. Energy, vol. 146, pp. 1143–1152, Feb. 2020, doi: 10.1016/j.renene.2019.07.039.

[7]       R. Capuano, T. Fend, H. Stadler, B. Hoffschmidt, and R. Pitz-Paal, ‘Optimized volumetric solar receiver: Thermal performance prediction and experimental validation’, Renew. Energy, vol. 114, pp. 556–566, Dec. 2017, doi: 10.1016/j.renene.2017.07.071.

[8]       R. Capuano, T. Fend, B. Hoffschmidt, and R. Pitz-Paal, ‘Innovative Volumetric Solar Receiver Micro-Design Based on Numerical Predictions’, in Volume 8B: Heat Transfer and Thermal Engineering, Houston, Texas, USA, 2015, p. V08BT10A005, doi: 10.1115/IMECE2015-50597.

[9]       M. Nakakura, S. Bellan, K. Matsubara, and T. Kodama, ‘Conjugate radiation-convection-conduction simulation of volumetric solar receivers with cut-back inlets’, Sol. Energy, vol. 170, pp. 606–617, Aug. 2018, doi: 10.1016/j.solener.2018.06.006.

[10]     T. Chartier, ‘Additive Manufacturing to Produce Complex 3D Ceramic Parts’, J. Ceram. Sci. Tech., no. 02, 2014, doi: 10.4416/JCST2014-00040.

[11]     Y. CHAO, ‘Design and Experiment of a 3D Printing System for Ceramics by Continuous Extrusion’, J. Ceram. Sci. Tech., no. 353, 2019, doi: 10.4416/JCST2019-00048.

[12]     S. Luque, G. Menéndez, M. Roccabruna, J. González-Aguilar, L. Crema, and M. Romero, ‘Exploiting volumetric effects in novel additively manufactured open solar receivers’, Sol. Energy, vol. 174, pp. 342–351, Nov. 2018, doi: 10.1016/j.solener.2018.09.030.

[13]     L. E. Criales, Y. M. Arısoy, and T. Özel, ‘Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625’, Int. J. Adv. Manuf. Technol., vol. 86, no. 9–12, pp. 2653–2666, Oct. 2016, doi: 10.1007/s00170-015-8329-y.

[14]     M. Scheffler and P. Colombo, Eds., Cellular Ceramics: Structure, Manufacturing, Properties and Applications, 1st ed. Wiley, 2005.

[15]     G. Ding, R. He, K. Zhang, M. Xia, C. Feng, and D. Fang, ‘Dispersion and stability of SiC ceramic slurry for stereolithography’, Ceram. Int., vol. 46, no. 4, pp. 4720–4729, Mar. 2020, doi: 10.1016/j.ceramint.2019.10.203.

[16]     G. Ding et al., ‘Stereolithography‐based additive manufacturing of gray‐colored SiC ceramic green body’, J. Am. Ceram. Soc., vol. 102, no. 12, pp. 7198–7209, Dec. 2019, doi: 10.1111/jace.16648.

[17]     K. Terrani, B. Jolly, and M. Trammell, ‘3D printing of high‐purity silicon carbide’, J. Am. Ceram. Soc., vol. 103, no. 3, pp. 1575–1581, Mar. 2020, doi: 10.1111/jace.16888.

Contacto

José González Aguilar, Responsable del grupo IMDEAE-UPAT en ACES2030-CM - jose.gonzalez@imdea.org

Coordina ACES2030-CM: Manuel Romero Álvarez. IMDEA Energía

Etiquetas:
Categorias: Energía solar

Un nuevo aditivo para envases alimentarios que elimina la bacteria causante de la listeriosis

Un equipo de investigadores del Instituto de Cerámica y Vidrio, del Consejo Superior de Investigaciones Científicas (CSIC), y de la empresa de base tecnológica Encapsulae han patentado el primer aditivo para envases de contacto alimentario con capacidad de matar la Listeria monocytogenes, la bacteria que causa la listeriosis.

La listeriosis es una infección muy grave debida a la bacteria Listeria monocytogenes. Tiene poca morbilidad (se dan pocos casos de infección), pero muy alta mortalidad, un 30%, que, en el caso de grupos sensibles, como ancianos y fetos, se eleva hasta un 70%. Las listerias son bacterias muy resistentes a diversas condiciones, como la acidez y las bajas temperaturas, e incluso tienen capacidad de crecimiento a temperaturas de refrigeración entre 2°C y 4°C. Dicha resistencia hace que esté ampliamente distribuida en el medio agrario (suelos, plantas, forrajes, materia fecal, aguas residuales y agua). La principal ruta de transmisión para el ser humano es el consumo de alimentos contaminados, como por ejemplo productos procesados listos para el consumo tales como salchichas cocidas o patés, pescados ahumados, productos lácteos elaborados con leche cruda y ensaladas preparadas. Muchos de los alimentos listos para el consumo incluyen en su proceso de producción una fase que elimina la listeria, como la cocción o el horneado, pero se pueden contaminar en el envasado final o en la manipulación durante la comercialización, como por ejemplo en un loncheado. En España, durante la crisis de la carne mechada en 2019, ha habido en un solo brote 216 casos, con 3 muertes y 7 abortos, siendo uno de los más importantes del mundo de la última década, según el  Colegio Oficial de Veterinarios de Madrid (COLVEMA). Durante los últimos años, la Autoridad Europea de Seguridad Alimentaria (European Food Safety Authority, EFSA) reportó unos 2.500 casos anuales de listeriosis en la Unión Europea, con 227 muertes. Y es previsible que el número de infecciones y brotes detectados de esta enfermedad vaya en aumento en el futuro, no tanto porque aumente el peligro, sino por la mejora de la sensibilidad y rapidez de las técnicas de detección y caracterización del patógeno, de modo que no se debe bajar la guardia en la vigilancia de los alimentos.

El aditivo desarrollado reduce de forma drástica la población de estas bacterias. En los ensayos in vitro se ha demostrado una alta actividad, pasando de 100.000 unidades formadoras de colonias a cero en 24 horas. “Se trata de un proceso disruptivo, donde hemos modificando la distancia de los enlaces químicos de un preservante alimentario empleado habitualmente en productos cárnicos. El encapsulado del aditivo modificado en el envase plástico genera una superficie de contacto que impide el crecimiento de las bacterias. Este efecto se ha demostrado también, entre otros microorganismos, para la resistente Listeria monocytogenes. Así, un simple envase de plástico aumenta la seguridad alimentaria”, explica el profesor José Francisco Fernández Lozano, del Instituto de Cerámica y Vidrio del CSIC.

El nuevo producto contra la listeria está ya disponible para su uso comercial. “La capacidad de producción actual permite suministrar aditivo para más de 50 millones de envases de alimentación. El aditivo está aprobado para su uso en envases plásticos de contacto con alimentos según las normativas EC 10/2011 y como aditivo activo según la EC450/2009”, explica Javier Menéndez, CEO de la startup Encapsulae SL. Encapsulaees una empresa de base tecnológica surgida del CSIC que forma parte de los programas de aceleración de startups de CLIMATE-KIC y PORCINNOVA para el desarrollo de envases activos y biodegradables. Ha ganado recientemente el primer puesto en la competición “Startups for sustainable land use” en la feria Smart Agrifood 2019 celebrada en Málaga.

 

Imagen de carne envasada facilitada por la empresa Encapsulae y el Consejo Superior de Investigaciones Científicas.

Contacto

Pedro Ávila, Responsable de Grupo ECI-CSIC del Programa ACES2030-CM. pavila@icp.csic.es. Coordina ACES2030-CM Manuel Romero del Instituto IMDEA Energía.

Etiquetas:

UCRA’19. “First conference of Unconventional Catalysis, Reactors and Applications”

Autor: Ana Serrano-Lotina-Instituto de Catálisis y Petroleoquímica-CSIC

A mediados de octubre se celebró en Zaragoza la primera conferencia relacionada con catálisis, reactores y aplicaciones no convencionales,

UCRA2019. El congreso contó con más de 120 asistentes y se han presentado un total de 264 comunicaciones, de las cuales 49 fueron orales y 36 póster.

Se presentaron además 4conferenciasplenarias:

PL.1 Richard van de Sanden (Dutch Institute for Fundamental Energy Resarch, Holland). “Recent trends in renovawable energy driven chemistry for energy conversion and storage: plasma chemistry as the special case”

PL.2 Jean-Luc Dubois (Arkema, France). “What 3D printing/Additive manufacturing can deliver to chemical industries”.

PL.3 Asier Unciti-Broceta (University of Edinburgh, UK). “Biocompatible catalytic devices and bioorthogonally-activated prodrugs to mediate local chemotheraphy”

PL.4 Dionisos Vlachos (University of Delaware, USA). “Computation-driven catalyst Discovery”.

Y 4 presentaciones magistrales:

K.1 Mechanochemical catalysts design and applications. Rafael Luque (Universidad de Córdoba, España).

K.2 Structured reactors under incuctive heating. Evgeny Rebrov (University of Warwick, UK).

K.3 Spatially structured catalysts and reactors for the transformation of CO2 to useful chemicals. Jorge Gascón (KAUST Catalysis Center, Saudi Arabia).

K.4 Direct heating of heterogeneous catalysts by microwaves: Minimizing unwanted gas phase chemistry. Jose Luis Hueso (Universidad de Zaragoza, España).

La organización de esta conferencia se inspiró en las tendencias observadas en el campo de la catálisis heterogénea en los últimos años. Las investigaciones van más allá de las aplicaciones tradicionales en reactores industriales y se expanden a nuevas áreas, como la salud, el medioambiente o la energía. Los catalizadores emergentes operan en entornos no convencionales, como células vivas, líquidos iónicos o fluidos supercríticos. Además, se exploran métodos no convencionales para la activación selectiva del catalizador, como microondas, ultrasonidos o campos magnéticos, reemplazando el calentamiento tradicional de reactores basado en la quema de combustibles fósiles.

La catálisis no convencional define un campo de investigación en el que las colaboraciones interdisciplinares entre la catálisis clásica, la ingeniería química y de materiales, la física, la tecnología energética, la biología o la medicina desempeñan un papel central. El objetivo de esta conferencia fue reunir a representantes de esas disciplinas y proporcionar información sobre los últimos desarrollos realizados. La conferencia cubrió una amplia selección de temas, desde métodos de síntesis de catalizadores no convencionales, formas novedosas de activar catalizadores, catálisis en entornos no convencionales o el diseño de reactores adecuados para nuevas formas de inducir reacciones químicas. El Instituto de Catálisis y Petroleoquímica (CSIC) contribuyó con 5 comunicaciones tipo poster y 3 comunicaciones orales versadas sobre la síntesis de nanotubos de titania, las ventajas e inconvenientes de la co-inmovilización de enzimas y los protocolos de inmovilización para la obtención de fosfolípidos ricos en ácido linoleico conjugado (CLA).

Contacto

Pedro Ávila, Responsable de Grupo ECI-CSIC del Programa ACES2030-CM. pavila@icp.csic.es. Coordina ACES2030-CM Manuel Romero del Instituto IMDEA Energía.

Etiquetas:

Nanopartículas: aplicaciones y toxicología

Autores: Víctor Alcolea, CSIC, Instituto de Catálisis y Petroleoquímica

La nanotecnología se dedica al diseño y manipulación de la materia a escala nanométrica (10-9 m). Las nanopartículas (NP) son una amplia clase de materiales con un tamaño inferior a 100 nm en una de sus tres dimensiones. Muestran propiedades físico-químicas únicas, por lo que representan, cada vez más, un nuevo tipo de materiales importantes para el desarrollo de nanodispositivos con aplicaciones médicas, físicas, farmacéuticas y/o químicas. En el ámbito médico, las NPs han resultado de gran interés para la fabricación de nuevos sistemas de liberación controlada de fármacos, cuyo objetivo es la dosificación óptima del principio activo. En otros ámbitos, como el medioambiental, se han empezado a utilizar nanopartículas de óxido de hierro para eliminar, mediante absorción, metales pesados como el mercurio o arsénico de aguas contaminadas [1].

Actualmente todas las personas estamos en contacto permanente con nanomateriales, ya que, debido a su gran utilidad, se fabrican a nivel industrial y están presentes en fertilizantes, combustibles y cosméticos, entre otros. Un ejemplo son las NPs de óxido de titanio (TiO2), las cuales se utilizan para proporcionar un pigmento blanco y brillante a los cosméticos [2], entre otros muchos usos. El pequeño tamaño de estos materiales permite que estemos expuestos a ellos mediante tres posibles vías: dérmica (en contacto con la piel), inhalación o ingestión. Por lo tanto, debemos preguntarnos si pueden ser dañinas para el ser humano, y si lo son ¿a partir de qué concentraciones o tamaños?

En la actualidad se están llevando a cabo una gran cantidad de investigaciones acerca de la toxicología de las diferentes nanopartículas [3]. Varios estudios concluyen que existen ciertos tipos de nanomateriales que tienen la capacidad de reaccionar con el medio reductor de las células, llevando a cabo un proceso denominado estrés oxidativo, el cual se relaciona con una gran cantidad de enfermedades de alta prevalencia como Alzheimer, diabetes o diferentes tipos de cáncer [4].

Ilustración 1. Patologías asociadas a la interacción con nanopartículas. Reproducido de Buzea, Pacheco, & Robbie, 2007 con el permiso de la American Vacuum Society (https://doi.org/10.1116/1.2815690)

La toxicología de las NPs dependerá de diferentes factores: composición, morfología, estructura cristalina, tamaño y propiedades superficiales (porosidad, área superficial específica y química superficial). En conclusión, una NP podrá ser más o menos tóxica en función de su capacidad para producir reacciones indeseadas en nuestro organismo [5].

De cara al futuro, el objetivo es predecir la toxicología de estos nuevos materiales para minimizar sus efectos negativos sobre la salud y hacer uso de ellos de manera responsable. Para ello se están haciendo grandes esfuerzos en medir las propiedades que determinan la toxicidad, modelizar los nanomateriales y su comportamiento, y estandarizar tanto los procesos de modelado como de caracterización para obtener información fiable y armonizada. Ejemplo de ello son los proyectos europeos BioRiMa y NanoInformaTIX, en los que participa el ICP-CSIC.

Bibliografía

[1]      I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., 2017.

[2]      C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: Sources and toxicity,” Biointerphases, vol. 2, no. 4, pp. MR17–MR71, 2007.

[3]      M. A. Bañares, L. Tran, and R. Rallo, Modelling the Toxicity of Nanoparticles, Springer., vol. 947. Cham: Springer International Publishing, 2017.

[4]      Z. H. Rappaport, “Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal Antonio,” Acta Neurochir. Suppl., vol. 98, pp. 9–12, 2006.

[5]      M. van Pomeren, W. J. G. M. Peijnenburg, N. R. Brun, and M. G. Vijver, “A novel experimental and modelling strategy for nanoparticle toxicity testing enabling the use of small quantities,” Int. J. Environ. Res. Public Health, vol. 14, no. 11, 2017.

 Contacto

Pedro Ávila, Responsable de Grupo ECI-CSIC del Programa ACES2030-CM. pavila@icp.csic.es. Coordina ACES2030-CM Manuel Romero del Instituto IMDEA Energía.

Etiquetas:
Categorias: General

Celebrado el evento final del proyecto PICASO sobre combustibles alternativos para el transporte

Alrededor de 50 asistentes procedentes de la Administración del Estado, empresas, centros de investigación, universidades y asociaciones se congregaron en el Auditorio del Instituto IMDEA Energía el pasado día 26 de noviembre con motivo del evento final del proyecto nacional PICASO (ENE 2015-74607-JIN AEI/FEDER/UE) “Planificación de la implementación de combustibles alternativos en el sector energético español para un transporte sostenible”. La jornada comenzó con la exposición de las implicaciones del Plan Nacional Integrado de Energía y Clima, PNIEC, en el sector transporte por parte de la ponente del Ministerio de Transición Ecológica. Los investigadores del proyecto, Diego Iribarren, Diego García-Gusano y Zaira Navas-Anguita, expusieron la metodología del trabajo y los resultados del mismo. El evento finalizó con una mesa redonda con la participación de Repsol, Nedgia, el Centro Nacional del Hidrógeno y Transport & Environment en la que se generó un animado debate sobre los distintos combustibles alternativos y su papel hacia un sistema energético sostenible al que se unieron los asistentes, procedentes de entidades como Iberdrola, Enagás, Cepsa, GasLicuado, Tecnalia, otras empresas, consultoras, asociaciones de consumidores y diversas universidades españolas y extranjeras.

Contacto: diego.iribarren@imdea.org

Actividad investigadora apoyada por el Ministerio de Economía, Industria y Competitividad  (ENE 2015-74607-JIN AEI/FEDER/UE).

Etiquetas: