‘Energía solar’

Electrodos basados en grafeno, ¿una revolución para la tecnología fotovoltaica?

Autores: Susana Mª Fernández Ruano. José Javier Gandía Alabau. Unidad de Energía Solar Fotovoltaica. Departamento de Energía. CIEMAT.

Uno de los retos a los que se enfrenta la sociedad actual es el desarrollo de nuevas tecnologías que permitan generar y almacenar energía de manera segura, sostenible y limpia; como consecuencia de la fuerte demanda energética existente. La generación de energía está originando una gran discusión socioeconómica que se ve agravada por el enorme crecimiento de la demanda en países emergentes. Esto da lugar a serios problemas medioambientales, de contaminación y cambio climático, así como a importantes problemas económicos por la cada vez más acuciante escasez de los recursos naturales y el continuo incremento de la factura de la electricidad. Estamos pues ante una sociedad altamente dependiente de las fuentes de energía, que comienza a ser consciente de la urgencia que hay por desarrollar y utilizar nuevas energías alternativas con carácter sostenible, por temor de que se agoten los recursos naturales.

En este escenario energético, en los próximos años se espera que la tecnología fotovoltaica juegue un papel crucial en la lucha contra el cambio climático. Hoy en día, la hoja de ruta del mercado fotovoltaico, dominado por la tecnología de la oblea de silicio, muestra una fuerte tendencia hacia células más delgadas y más baratas. En este sentido, la tecnología de heterounión de silicio surge como solución potencial de baja temperatura, ya que se trata de dispositivos con excelentes prestaciones y bajo consumo de energía en su fabricación. Uno de los progresos en esta tecnología requiere desarrollar nuevas arquitecturas de electrodos frontales transparentes que permitan la extracción de la corriente del dispositivo de manera más eficiente. En este sentido, el uso del grafeno, el material más resistente que se conoce en la naturaleza, atrae un gran interés. Se piensa que puede ser el substituto incluso de materiales tan importantes como el propio silicio en algunas aplicaciones, y promete su aplicación en sectores muy dispares. Las expectativas generadas para este material están siendo enormes, y no hay duda que presenta propiedades excepcionales que en principio podrían suponer una verdadera revolución tecnológica debido a sus características específicas.

Bajo estas premisas, la Unidad de Energía Solar Fotovoltaica (UESF) del CIEMAT, en colaboración con la División de Química y la Unidad de Electrónica, ambas también del CIEMAT, y el Instituto de Sistemas Optoelectrónicos y Microtecnologías (ISOM), perteneciente a la Universidad Politécnica de Madrid (UPM), se encuentra inmersa en el proyecto DIGRAFEN de la convocatoria de Retos de 2017 [1]. Una de las finalidades de este proyecto es llegar a implementar el grafeno, aprovechando sus excelentes propiedades, en dispositivos de generación de energía ya existentes. En particular, se pretende incorporar este material de modo que se mejoren las propiedades electrónicas y ópticas de los electrodos frontales, obteniendo así células fotovoltaicas más eficientes. Este proyecto es altamente innovador puesto que su principal enfoque es desarrollar nuevas tecnologías e ingeniería de procesado del grafeno para su uso en dispositivos de generación y almacenamiento de energía.

Actualmente la UESF, en estrecha colaboración con el ISOM, se encuentra explorando nuevas arquitecturas de electrodos transparentes basadas en incorporar una, dos y/o tres capas de grafeno atómico en unión con un óxido conductor transparente convencional, en diferentes configuraciones (ver Fig. 1 (a)).

  

Fig. 1. (a) Configuraciones de electrodo transparente con grafeno, y (b) sus propiedades ópticas, testeadas en el marco del proyecto DIGRAFEN [2].

Los primeros resultados obtenidos revelan que las propiedades optoelectrónicas del electrodo transparente basado en grafeno dependen dramáticamente del orden en el que se encuentren las capas de grafeno atómico. Tanto es así que se han obtenido valores de resistencia de hoja de 55 Ω/sq cuando el grafeno se coloca en la parte superior del electrodo, y de 150 Ω/sq, cuando el grafeno está situado en la parte posterior del mismo (cubierto por el óxido conductor transparente). En cuanto a sus propiedades ópticas, se ha observado que la transmitancia del conjunto no se ve afectada por la posición del grafeno; mientras que la comparación de las reflectancias espectrales con y sin grafeno transferido en la parte superior, nos permiten determinar una importante reducción en este valor, esencial para el dispositivo, validándose así la nueva arquitectura. Estos electrodos se aplicarán en un futuro muy cercano sobre un dispositivo fotovoltaico de heterounión de silicio. Todo ello con la intención de convertir en realidad el uso de uno de los materiales más prometedores que existen, contribuyendo además a la mejora de la generación de una energía limpia y sostenible.

Referencias:

[1] http://projects.ciemat.es/web/digrafen/

[2] S. Fernández, A. Boscá, J. Pedrós, A. Inés, M. Fernández, I. Arnedo, J.P. González, M. de la Cruz, D. Sanz, A. Molinero, R. Singh Fandan, M.A. Pampillón, F. Calle, J.J. Gandía, J. Cárabe, J. Martínez, “Advanced Graphene-based transparent conductive electrodes for photovoltaic applications”, Micromachines 2019, vol 10, 402 (11 pages).

Online version: https://doi.org/10.3390/mi10060402

 

Socios del proyecto:

Contacto:

Susana Mª Fernández Ruano de la Unidad de Energía Solar Fotovoltaica del CIEMAT. E-mail: susanamaria.fernandez@ciemat.es

Etiquetas:

INSHIP – Integrating National Research Agendas on Solar Heat for Industrial Processes

Autor: Alfonso Vidal-CIEMAT

Resumen

A pesar de que el calor de proceso es reconocido como la aplicación con mayor potencial entre las aplicaciones de calefacción y refrigeración solar, el calor solar para procesos industriales (SHIP) todavía presenta una modesta participación de alrededor de 88 MWth de capacidad instalada (0,3% del total de la capacidad solar térmica instalada).

En este contexto, el proyecto INSHIP (Integrating National Research Agendas on Solar Heat for Industrial Processes) tiene por objeto la definición de un ECRIA (European Common Research and Innovation Agenda) que reúne a los principales institutos de investigación europeos con actividades reconocidas en el ámbito del SHIP.

El uso de la energía solar concentrada en sustitución de los combustibles fósiles para impulsar la calcinación endotérmica del CO3Ca a más de 1300 K tiene el potencial de reducir las emisiones de CO2 en un 20% en una planta de cal de última generación y hasta un 40% en una planta de cemento convencional.

En este sentido, la actividad 4.2 del proyecto INSHIP liderada por CIEMAT se centra en la integración de este proceso en una planta de torre central, la selección del tipo de reactor más adecuado y finalmente la evaluación del rendimiento térmico del receptor en condiciones reales.

Abstract

Despite process heat is recognized as the application with highest potential among solar heating and cooling applications, Solar Heat for Industrial Processes (SHIP) still presents a modest share of about 0.3% of total installed solar thermal capacity. In this context, the project INSHIP (Integrating National Research Agendas on Solar Heat for Industrial Processes) aims at the definition of an ECRIA (European Common Research and Innovation Agenda) engaging major European research institutes with recognized activities on SHIP

Cement is the third-largest energy consumer in the industry sector, accounting for 7% of total final industrial energy use, but due to important process emissions, cement has the second-largest share of CO2 emissions from industry at 27%, i.e. 6.5% of total energy-related CO2 emissions.

The use of concentrated solar energy in place of fossil fuels for driving the endothermic calcination reaction CaCO3 = CaO + CO2 at above 1300 K has the potential of reducing CO2 emissions by 20% in a state-of-the-art lime plant and up to 40% in a conventional cement plant.

The activity 4.2 of the INSHIP project led by CIEMAT focuses on the integration of a cement process in a central tower plant, selection of the most suitable reactor configuration and finally the evaluation of the thermal performance of the receiver under real conditions.

A pesar de que el calor de proceso es reconocido como la aplicación con mayor potencial entre las aplicaciones de calefacción y refrigeración solar, el calor solar para procesos industriales (SHIP) todavía presenta una modesta participación de alrededor de 88 MWth de capacidad instalada (0,3% del total de la capacidad solar térmica instalada). A nivel regional, la contribución del calor de proceso en el consumo total de energía final representa valores en torno al 30% en Asia y América Latina, alrededor del 20% en Europa, Eurasia y Australia no pertenecientes a la OCDE o alrededor del 15% en Europa, África y América de la OCDE.

La gama actual de costes de producción de calor muestra que el calor de proceso impulsado por energías renovables (ER) ya es económicamente competitivo cuando se consideran la biomasa o los recursos geotérmicos. La energía solar térmica se acerca actualmente a la competitividad sólo en aplicaciones de baja temperatura.

En este contexto, el proyecto INSHIP (Integrating National Research Agendas on Solar Heat for Industrial Processes) tiene por objeto la definición de un ECRIA (European Common Research and Innovation Agenda) que reúne a los principales institutos de investigación europeos con actividades reconocidas en el ámbito del SHIP.

El paquete 4 del proyecto tiene como objetivo identificar aquellos procesos industriales con una demanda importante de calor a alta temperatura y altas emisiones, de cara a una posible integración de energía solar concentrada. 

La industria del cemento es el tercer consumidor de energía del sector industrial, con un 7% del total del consumo final de energía industrial, pero debido a las importantes emisiones de los procesos, el cemento tiene la segunda mayor parte de las emisiones de CO2 de la industria, con un 27%, es decir, un 6,5% del total de las emisiones de CO2 relacionadas con la energía. Se prevé que esta cuota se duplique en 2050 bajo el 2DS, situando al subsector del cemento en el primer lugar.

El uso de la energía solar concentrada en sustitución de los combustibles fósiles para impulsar la calcinación endotérmica [1] a más de 1300 K tiene el potencial de reducir las emisiones de CO2 en un 20% en una planta de cal de última generación y hasta un 40% en una planta de cemento convencional.

En este sentido, la actividad 4.2 del proyecto INSHIP liderada por CIEMAT se centra en la integración de este proceso en una planta de torre central, la selección del tipo de reactor más adecuado y finalmente la evaluación del rendimiento térmico del receptor en condiciones reales.

Para este tipo de proceso se ha seleccionado la geometría de cavidad,  esta geometría ha sido ampliamente utilizada como concepto de reactor solar dado que ha demostrado tener mayores eficiencias que los receptores externos (1,2). El uso de geometrías de cavidad facilita la reducción de las pérdidas térmicas, minimizando las pérdidas convectivas y radiativas totales, lo que conduce a una mejora de la eficiencia óptica.

Estas configuraciones son adecuadas para aplicaciones de concentración solar ya que suelen mostrar una baja respuesta a los cambios en las condiciones de funcionamiento, lo que evita cambios bruscos de temperatura en presencia de pequeños transitorios, lo que resulta especialmente útil cuando se aplica calor solar a una planta química en la que los cambios de temperatura en un proceso pueden producir problemas en el control de la planta.

Un prototipo de receptor de 100 kW se está ensayando en la torre CRS de la Plataforma Solar de Almería en condiciones reales para confirmar este tipo de comportamiento.

[1] Harris, J.A., Lenz, T.G.,. Thermal performance of solar concentrator/ cavity receiver systems. Solar Energy 34 (2), (1985). 135–142.

[2] Clausing, A.M. An analysis of convective losses from cavity solar central receivers. Solar Energy 27 (4), (1981) .295–300.

Contacto

Alfonso Vidal, Investigador del Grupo CIEMAT-ATYCOS del Programa ACES2030-CM.- alfonso.vidal@ciemat.es

Coordina ACES2030-CM Manuel Romero del Instituto IMDEA Energía.

Etiquetas:

La búsqueda de rentabilidad de la energía solar térmica de concentración

Autor: Javier Muñoz-Antón-Grupo de Investigaciones Termoenergéticas, Universidad Politécnica de Madrid

Resumen

La independencia energética de países de escasos recursos fósiles resulta prácticamente imposible, lo que en el caso de países como España obliga a orientar la política energética hacia recursos renovables, entre las que se puede destacar la energía solar. El fiasco nacional de la política de subvenciones de principio de siglo XXI, y la crisis económica complican la implantación de estas tecnologías que a día de hoy resultan excesivamente caras en comparación con ciertas alternativas tradicionales y otras renovables. La investigación que se presenta a continuación trata de mitigar el problema de la incursión de nuevas tecnologías de aprovechamiento solar en el mercado con un nuevo concepto de planta termosolar que presente cambios disruptivos frente a diseños previos en base a una sistemática de análisis de coherencia térmica en todos los procesos de la planta de aprovechamiento y generación. Esta tecnología ya se está explotando a nivel de prototipo mediante el proyecto Futuro Solar, fruto de la colaboración entre la Universidad Politécnica de Madrid y OHL Industrial: Futuro Solar fue presentado en el marco de la 2ª convocatoria de proyectos de Investigación y Desarrollo cofinanciados por el Mecanismo Financiero del Espacio Económico Europeo (EEA-Grants gestionadas por CDTI IDI-20140942) constituyendo en su momento un prototipo avanzado en cuanto a la curva de aprendizaje respecto al estado de la técnica de la tecnología termosolar. Como evolución se llegó al diseño del Reloj De Sol, el cual ha sido construido con fondos propios de la F2I2-GIT y constituye un sistema robusto y barato para producción de calor de proceso, que se encuentra actualmente en fase de pruebas.

Abstract

The energy independence of countries with scarce fossil resources is practically impossible, which in the case of countries like Spain obliges to direct energy policy towards renewable resources, among which solar energy can be highlighted. The national fiasco of the subsidy policy of the beginning of the 21st century, and the economic crisis complicate the implementation of these technologies that today are too expensive compared to certain traditional and other renewable alternatives. The research presented below tries to mitigate the problem of the incursion of new technologies of solar use in the market with a new concept of solar thermal plant that presents disruptive changes compared to previous designs based on a systematic analysis of thermal coherence in all the processes of the use and generation plant. This technology is already being exploited at the prototype level through the Futuro Solar project, the result of collaboration between the Universidad Politécnica de Madrid and OHL Industrial: Futuro Solar was presented within the framework of the 2nd call for Research and Development projects co-financed by the Financial Mechanism of the European Economic Area (EEA-Grants managed by CDTI IDI-20140942) constituting at the time an advanced prototype in terms of the learning curve with respect to the state of the art of solar thermal technology. As an evolution, the design of the Sun Dial was reached, which has been built with the F2I2-GIT’s own funds and constitutes a robust and cheap system for the production of process heat, which is currently in the testing phase.

 Artículo difusión

La agricultura siempre ha sido un referente para sistemas de producción en los que se necesita gran superficie para obtener beneficio económico, siempre tratando de reducir los costes de recolección respecto a la superficie donde se realiza.

Esta máxima se puede aplicar al aprovechamiento de energía solar en los campos solares para producción de energía renovable, donde aparecen dos competidores importantes: fotovoltaica y solar térmica. La primera adolece actualmente de almacenamiento de energía en grandes cantidades con buen rendimiento. La segunda lo permite, pero con un coste mayor. El almacenamiento térmico tiene el inconveniente de que cuanto mayor es la temperatura, mayores son las pérdidas… e  interesa que la temperatura sea cuanto mayor mejor para la producción de energía eléctrica.

Para el caso de la solar térmica existen cuatro tecnologías disponibles a nivel comercial (figura 1) con diferentes costes, eficiencias, temperaturas… sin que exista un dominador claro a día de hoy.

Figura 1: Tipos de tecnologías termosolares

En la búsqueda de ese dominador se basa en economía, fiabilidad y rendimiento, que deben ser analizadas desde una perspectiva novedosa como puede ser la coherencia térmica, o de forma más explícita, evitar requerimientos excesivos par el fin que se persigue. Para ello, se puede tener en cuenta otros ámbitos de la ingeniería como el nuclear, donde multitud de centrales funcionan con temperaturas moderadas (300ºC).

Los años anteriores a la crisis financiera fueron caracterizados a nivel nacional por importantes subvenciones, cuyo objetivo era impulsar el desarrollo de tecnologías renovables competitivas, pero que en la práctica del ámbito termosolar replicó una y otra vez el mismo concepto de campo desarrollado en los años 80 del pasado siglo sin avances tecnológicos sustanciales.

La tendencia tradicional a mejorar las prestaciones de los sistemas termosolares incrementando su temperatura lastra la competitividad de la tecnología incrementando los requerimientos de precisión y materiales, cuando lo necesario para producir energía eléctrica no es tan exigente si se toma como referente el ámbito nuclear, que requiere unos 300ºC.

La falta de necesidad detectada de ir a requerimientos tan exigentes, como en el ámbito de la energía eólica con el molino de tres palas, lleva a reconsiderar el diseño de plantas termosolares. Sin olvidar que aumentar la temperatura tiene dos consecuencias fundamentales: disminuye el rendimiento del receptor al aumentar las pérdidas térmicas y aumenta el rendimiento de la conversión de energía eléctrica al hacerlo el bloque de potencia.

Tradicionalmente los sistemas Fresnel se han utilizado a pequeña escala para producir un efluente térmico cercano a 350ºC, haciendo uso de una única tubería situada en el receptor. Pero el perfil de concentración que alcanza el receptor de un sistema Fresnel se asemeja no es constante, por lo que colocar un único tubo limita la máxima temperatura que se puede llegar a alcanzar. Aumentar el número de tubos permite tener la posibilidad de elevar la temperatura del efluente térmico (figura 3), y posibilitando una especialización de los tubos: los que reciben menor radiación solar trabajan a menor temperatura y los que reciben mayor radiación solar trabajan a mayor temperatura, existiendo una temperatura para cada densidad de potencia.

Figura 2: Sección transversal de un receptor Fresnel multitubo para un mejor aprovechamiento térmico

Figura 3: Reloj de Sol

Figura 4: Receptor del Reloj de Sol en funcionamiento

Conclusiones

La posibilidad de reducir requerimientos y prestaciones no debe ser olvidada para conseguir una mayor rentabilidad de la producción de energía termosolar, y soluciones como el Reloj de Sol (figuras 4 y 5) deben ser tenidas en cuenta, fundamentalmente por el hecho de no requerir de tecnología compleja y poderse construir con medios disponibles en polígonos industriales comunes.

Contacto

Javier Muñoz Antón, Responsable en funciones  de Grupo UPM-GIT del Programa ACES2030-CM. – jamuñoz@etsii.upm.es

Coordina ACES2030-CM Manuel Romero del Instituto IMDEA Energía.

Etiquetas:
Categorias: Energía solar, General

Empaquetamiento compacto de mallas metálicas como absorbedores volumétricos: Una línea prometedora

Autor: Antonio Luis Ávila-Marín (CIEMAT-PSA)

Los sistemas de receptor central, por sus diversas posibilidades técnicas, han sido entendidos como la tecnología con mayor potencial para reducir costes y aumentar la eficiencia global de la planta. En este sentido, la bibliografía científica así como la importancia de los proyectos europeos y nacionales concedidos a entidades como el CIEMAT-PSA, muestran esta tendencia, especialmente aplicada al concepto de los receptores volumétricos.

El CIEMAT-PSA comenzó en el año 2010 dentro del proyecto Solgemac y continuo con el proyecto Alccones la idea de trabajar con receptores volumétricos formados por un empaquetamiento compacto de mallas metálicas, por sus ventajas frente a los conocidos receptores de canales o las espumas cerámicas.

Hasta el comienzo del proyecto Solgemac, los receptores volumétricos formados por mallas metálicas (Betchel y Sirec principalmente [1]), habían tenido la característica común de separar las mallas metálicas una cierta distancia. En nuestro trabajo, siempre apostamos por empaquetar las mallas forzando un contacto físico entre las mismas (conocido como empaquetamiento denso). Además, se ha trabajado la posibilidad de realizar empaquetamientos escalonados y en línea que presentan diferente comportamiento.

Recientemente, en el Congreso de la Asociación Americana de Ingenieros Mecánicos (ASME en inglés) realizado en Bellevue, Washington sobre Transferencia de Calor, el profesor Kribus junto a sus compañeros (Livshits y Avivi), presento un interesante trabajo destacando las virtudes y el potencial que el empaquetamiento compacto de mallas metálicas frente a la diversidad de trabajos sobre materiales cerámicos, que en muchas ocasiones presentan resultados completamente contrarios entre sí.

Este trabajo [2], realizado por un importante investigador en el mundo de la tecnología de  receptores volumétricos , confirma la visión conceptual sobre este tipo de absorbedores iniciada en el proyecto Solgemac, continuada en el proyecto Alccones y que dio origen a la tesis [3], en el marco de ambos proyectos, sobre este tema por parte del CIEMAT-PSA.

Más concretamente, Kribus dice “el resultado más interesante del presente trabajo es la identificación de una nueva estructura: el empaquetamiento compacto de mallas metálicas, que nunca ha sido ensayado como un absorbedor solar”. También indica que “aún es necesario realizar mucho más trabajo para alcanzar a comprender si este absorbedor es capaz de cumplir las predicciones teóricas y más aún, investigar su idoneidad en aspectos como la fabricación, coste, solidez, etc.”

Esta investigación y los resultados ya obtenidos en los citados proyectos (a la espera de ser publicados en breve) nos animan a continuar con la línea de trabajo, sabiendo que ya, no sólo el CIEMAT-PSA está trabajando sobre este concepto.

Bibliografía

[1] A.L. Avila-Marin, Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review, Solar Energy, Volume 85, Pages 891-910, (2011).

[2] M. Livshits, L. Avivi, A. Kribus, Dense wire mesh as a high-efficiency solar volumetric absorber, ASME Summer Heat Transfer Conference, Bellevue, Washington, USA, paper HT-2017-5080, (2017).

[3] A.L. Avila-Marin, Análisis termofluidodinámico de absorbedores volumétricos de porosidad gradual con mallas metálicas: Estudio experimental a escala de laboratorio y desarrollo de un modelo de no equilibrio térmico local. Dissertation. Ingeniería Energética. Madrid. ETSII – UNED, (2016).

 

Etiquetas:

Aplicación de la computación fluidodinámica en tecnologías de concentración solar térmica como ejemplo de ingeniería verde

Autora: María Isabel Roldán Serrano. CIEMAT-Plataforma Solar de Almería

Actualmente, uno de los grandes retos es acelerar el desarrollo de tecnologías energéticas avanzadas para obtener una energía respetuosa con el medioambiente, frenar el cambio climático y lograr un desarrollo sostenible. En este contexto, la “ingeniería verde” considera que la protección de la salud y del medioambiente genera un gran impacto y rentabilidad cuando se aplica en el diseño y en la fase de desarrollo de un proceso o producto. Otros conceptos relacionados con ingeniería verde son ingeniería ambiental o sostenible. Por ello, en este ámbito, el término “verde” se refiere a procesos y a generación de productos que minimizan la contaminación, promueven la sostenibilidad y protegen la salud sin que implique sacrificar la viabilidad económica y eficiencia del proceso. Más ampliamente, este término ha sido asociado al desarrollo sostenible, en el que procesos y productos pueden realizarse indefinidamente con un consumo de recursos controlado y una degradación medioambiental mínima [1][2].

De esta forma, los procesos y productos procedentes de la ingeniería verde están basados en los siguientes principios [3]:

  • Uso integral del análisis de sistemas e implementación de herramientas de evaluación de impacto ambiental.
  • Conservación y mejora de los ecosistemas naturales, junto con la protección de la salud y el bienestar.
  • Empleo del análisis del ciclo de vida que permite medir el flujo de energía, de materiales y emisiones tóxicas involucradas durante el proceso o la fabricación de un producto.
  • Asegurar que los materiales y energías entrantes y salientes del proceso son respetuosos con la salud y el medioambiente.
  • Evitar el agotamiento de los recursos naturales.
  • Eliminar la generación de residuos y la emisión de los gases de efecto invernadero.Además, es necesario tener en cuenta que la ingeniería verde desarrolla y aplica soluciones tecnológicas adaptadas a la zona donde la instalación es ubicada. Estas soluciones deben implicar la mejora y obtención de una tecnología innovadora que logre alcanzar la sostenibilidad. En este sentido, la aplicación de este tipo de ingeniería se puede agrupar principalmente en cinco categorías [4]: generación de energía renovable, calidad energética, control ambiental, optimización de máquinas y procesos, y  desarrollo y prueba de productos verdes y tecnologías.

    La categoría de generación de energía renovable cubre un amplio rango de tecnologías, tales como eólica, solar (fotovoltaica y térmica), de biocombustibles, hidráulica, mareomotriz y geotérmica. La investigación y desarrollo en estas áreas se está expandiendo e impulsando por los objetivos ambientales anteriormente definidos y por la creciente legislación gubernamental relativa al desarrollo sostenible. Hoy en día más de 50 países, con una gran variedad de políticas, geografías y condiciones económicas, poseen un amplio conjunto de objetivos con el fin de cubrir gran parte de su demanda energética con sistemas de generación a partir de fuentes renovables [2][3].

    Las tecnologías de concentración solar térmica se pueden considerar como un ejemplo de ingeniería verde debido a que utilizan una fuente de energía renovable como alternativa a los combustibles fósiles, contribuyendo positivamente al desarrollo sostenible y permitiendo realizar procesos que eviten la generación de gases de efecto invernadero. En este ámbito, la implementación del llamado “diseño verde” debe ofrecer un sistema viable y rentable a la vez que reduzca la generación de contaminación en la fuente y minimice el riesgo para la salud y medioambiente.

    El sector termosolar es todavía emergente y, en muchos casos, la tecnología y las instalaciones empleadas son experimentales. En este contexto, las tecnologías de concentración solar térmica requieren la integración de un diseño completo y eficiente con el fin de obtener el máximo rendimiento de cada instalación; para lo que es necesario el uso de herramientas de simulación avanzadas que sean capaces de predecir el comportamiento del fluido caloportador en la instalación, así como la definición y optimización de las condiciones de operación con el fin de aumentar la eficiencia del sistema y cumplir con el propósito perseguido por la ingeniería verde.

    La predicción y el análisis del comportamiento térmico y fluido-dinámico de las instalaciones termosolares son la base para mejorar el rendimiento térmico de la planta. Para tal fin se emplea la computación fluidodinámica (CFD) que permite reducir el esfuerzo invertido en la realización del diseño experimental y la adquisición de datos. Esta rama de la mecánica de fluidos complementa el modelado físico y otras técnicas experimentales; puesto que permite suministrar una información detallada de la circulación del fluido en la instalación, incluyendo el estudio de fenómenos complejos como la turbulencia, reacciones químicas, transferencia de calor y materia, y flujo multifásico.

    En la mayoría de los casos, el desarrollo de modelos numéricos implica un menor coste económico y de tiempo, en comparación con el requerido por procedimientos experimentales. Esto permite investigar más opciones de diseño y sistemas bajo condiciones extremas. Además, el modelado CFD ofrece la posibilidad de analizar problemas internos y específicos en el flujo de fluidos que serían muy costosos o imposibles de realizar mediante métodos experimentales; lo que da confianza en la selección del diseño propuesto evitando así el sobredimensionado de la instalación, reduciendo su malfuncionamiento y alargando su periodo de vida. Por ello, la CFD se ha convertido en una herramienta fiable para apoyar a los ingenieros e investigadores en el diseño de equipos industriales e instalaciones innovadoras, eliminando en muchos casos la necesidad de desarrollar el procedimiento experimental de ensayo–error que lleva consigo un consumo de recursos y una generación de residuos que hacen alejarse del objetivo marcado por la ingeniería verde.

    El creciente interés por el “diseño verde” ha llevado a aplicar el modelado CFD en diferentes áreas tales como en el diseño de edificios eficientes energéticamente y en diseño de aerogeneradores. En el sector termosolar, el modelado CFD se está aplicando en el diseño de nuevos conceptos de receptores, en la optimización de diseños existentes, en el análisis térmico de los fluidos de trabajo y, además, en la optimización de las condiciones de operación para distintas instalaciones [5]. Por tanto, la versatilidad de la simulación CFD y la necesidad de desarrollar procesos sostenibles y respetuosos con el medioambiente, hacen que sea una herramienta esencial para plantear nuevos diseños en las tecnologías de concentración solar térmica.

    Fuentes:

  1. Al-Baghdadi MARS (2014) Computational fluid dynamics applications in green design. International Energy and Environment Foundation, Iraq.
  2. Roldán M.I. (2017) Concentrating Solar Thermal Technologies: Analysis and Optimisation by CFD Modelling. Springer International Publishing AG, Switzerland.
  3. US Environmental Protection Agency (2015) https://www.epa.gov/green-engineering.
  4. National Instruments (2008) Ingeniería Verde – Mejorando el Ambiente y la Rentabilidad, Instrumentation 2, vol. 20.
  5. www.psa.es

Etiquetas:

La Concentración de Energía Solar: un mercado todavía pequeño pero que aprende rápido

Autora: Beatriz Lucio-Instituto IMDEA Energía

La reducción de costes que se ha dado en los sistemas para obtener electricidad fotovoltaica (PV, en inglés Photovoltaics) en los últimos diez años, ha provocado que se convierta en una de las opciones energéticas más económicas. Concretamente, en 2016 su capacidad global llegó a los 300 GW, con un crecimiento progresivo anual que supera el 30%. Por otro lado, la concentración de energía solar (CSP, en inglés Concentrating Solar Power) es una alternativa menos conocida, cuya implementación en el mercado empezó después que la PV en el año 2007. En 2016 la capacidad de la CSP alcanzó los 5 GW, pero se encuentran menos datos sobre la evolución de costes comparándola con la PV. Esto es debido a que los sistemas fotovoltaicos tienen dos componentes principales, módulo PV y convertidor, que se ofrecen actualmente en el mercado como producto de forma competitiva; mientras que los sistemas de concentración solar son más complejos. La tecnología más común de la CSP basada en colectores cilindro-parabólico consiste en un campo de colectores, un circuito para la transferencia del calor mediante un fluido que puede incluir el almacenamiento de energía y un bloque de potencia que convierte la energía térmica en electricidad. Existen a nivel mundial sólo unos pocos suministradores con la capacidad de asumir el riesgo financiero, donde el saber hacer representa la parte más valiosa de los proyectos. Para la mayoría de las instalaciones hay información disponible sobre las inversiones de forma global o de los ingresos por kWh, lo que hace que sea muy difícil llegar a una conclusión en términos económicos sobre cómo evoluciona el mercado de la CSP [1].

Un estudio reciente [2] ha identificado las distintas fases de desarrollo del mercado con todos los proyectos comerciales relacionados con la CSP (tanto sistemas cilindro-parabólico como de tipo torre), realizando una base de datos. En este estudio se demuestra que desde los últimos cinco años hay una clara evidencia de la reducción de costes para la CSP de cilindro-parabólico, aumentando los conocimientos al 25%. Estas cifras son superiores a las esperadas y similares a lo que han evolucionado a lo largo de 35 años los módulos de PV.

Referencias:

[1] R. Pitz-Paal. Nat. Energy 2, 17095 (2017).

[2] J. Lilliestam, M. Labordena, A. Patt, S. PfenningerNat. Energy 2, 17094 (2017).

 

Etiquetas:

El desafío solar: fotovoltaica frente a termosolar

Sin duda la energía solar jugará un papel cada vez más importante en la producción energética mundial, pero determinar en qué proporción contribuirán cada una de las tecnologías disponibles dependerá no solo de aspectos económicos y de las políticas de apoyo, sino también de la capacidad de explotar sus complementariedades.

Autor: Juan M. Coronado-Instituto IMDEA Energía

La energía solar es el recurso renovable más abundante en la tierra y se espera que en el futuro contribuya de forma muy notable al mix energético global. Debido a la reducción masiva de costes experimentada en los últimos años la producción de electricidad mediante sistemas fotovoltaicos (PV) ya representa una de las opciones económicamente más competitivas si se dan las condiciones favorables de la irradiación. Esto ha desencadenado un enorme crecimiento del mercado para sistemas fotovoltaicos en la década pasada, y a finales de 2016 se alcanzó una capacidad global instalada de cerca de 300 GW y con un crecimiento anual de superior al 30%. Por el contrario, la energía solar de concentración (CSP) es una alternativa menos conocida, que, dejando aparte los sistemas de demostración instalados en California entre 1985 y 1991, no inició su despliegue comercial hasta 2007. Las instalaciones CSP alcanzaron una capacidad global de cerca de 5 GW a finales de 2016. Sin embargo, al contrario que en el caso de la PV, existe muy poca información disponible sobre la evolución de los costes. Estas diferencias tienen que ver con el hecho de que los sistemas fotovoltaicos consisten en sólo dos componentes principales, el módulo fotovoltaico y el inversor, ambos disponibles en un mercado muy competitivo y transparente. Por el contrario, CSP es un sistema más complejo: la tecnología más común (basada en receptores cilindroparabólicos) consiste en un campo de concentración de colectores solares, un circuito con el fluido de transferencia de calor, que también puede incluir almacenamiento de energía térmica, y un bloque de potencia que convierte la energía solar de alta temperatura en electricidad.

Con objeto de comprender mejor la evolución de costes del CSP, Johan Lilliestam y sus colaboradores del ETH Zürich (Suiza) han creado una base de datos de todos los proyectos CSP comerciales del mundo utilizando un amplio conjunto de fuentes y desarrollando aproximaciones razonables para estimar parámetros desconocidos y generar un conjunto completo de datos. Este estudio, recientemente publicado en Nature Energy,[1][2] se presenta claras evidencias de una reducción de costes de sistemas CSP de receptores parabólicos en los últimos cinco años a un ritmo superior al 25%. Este valor es mayor de lo esperado y se encentra en el mismo rango que la cifra promedio para módulos fotovoltaicos  en un periodo más largo (20,9% en los últimos entre 35 años). Los investigadores concluyeron que la continuidad en el desarrollo de proyectos y la colaboración de las industrias de fabricación de componentes, así como las políticas de apoyo por parte de gobiernos y administraciones, especialmente si fomentan la competitividad, son importantes para mantener una tasa de aprendizaje alta que permita seguir en la senda de la reducción de costes de CSP.

No obstante, a pesar de estas evidentes mejoras en la reducción de costes del CSP, teniendo en cuenta los valores ya muy competitivos de la generación fotovoltaica, cabe preguntarse si continuar apostando por la tecnología CSP es necesario y/o razonable. En este sentido la respuesta no puede basarse únicamente en la medición de precios de la energía por kWh si no que precisa un examen integral del sistema energético. Actualmente la tecnología PV sólo proporciona electricidad durante las horas de luz solar, lo que obliga a operar estos sistemas en combinación con otras tecnologías que aporten la flexibilidad necesaria para equilibrar la producción y la demanda. En este sentido el CSP con almacenamiento térmico integrado es una opción muy atractiva en comparación con sistemas de almacenamiento de electricidad grandes proporciones. Esto es debido a que la incorporación de las baterías para el almacenamiento de electricidad en las instalaciones de PV siempre lleva asociadas inversiones adicionales muy significativas. Por el contrario, los sistemas CSP con almacenamiento térmico integrado son potencialmente más baratos que los que los sistemas de la misma tecnología que no lo incorporan. De esta manera algunas proyecciones indican que a partir del 2025, en las regiones que cuente con recursos solares abundantes, se espera una alta penetración de sistemas complementarios de PV y CSP. En concreto, en los escenarios donde se limitan las emisiones de CO2 o los precios del combustible son altos, combinara las dos tecnologías solares resulta económicamente más atractivo que la integración de elementos de almacenamiento de electricidad, o sistemas de apoyo basados en combustibles fósiles. Estas conclusiones se basan en el supuesto de que se pueden conseguir importantes reducciones de precios en la producción CSP [3], un hecho que ahora puede ser considerado más probable en un futuro próximo a la luz de los hallazgos del grupo de Lilliestam2.


[1] Robert Pitz-Paal. Nat. Energy. News & Views. 2, 17095 (2017)

[2] Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

[3] Mehos, M., Jorgenson, J., Denholm, P. & Turchi, C. Energy Procedia 69, 2060–2071 (2015).

Etiquetas:

13th Sollab doctoral colloquium on solar concentrating technologies

Autor: Lucía Arribas-Instituto IMDEA Energía

 

Entre los días 15 y 17 de mayo tuvo lugar en Berlín el encuentro anual de jóvenes investigadores en el ámbito de tecnologías de energía solar concentrada, en el que participan investigadores de este ámbito de distintos países de la Unión Europea.

Este coloquio está enmarcado dentro del proyecto Sollab (alianza de laboratorios europeos en sistemas de energía solar térmica concentrada) en el que participan: la Plataforma Solar de Almería (perteneciente al CIEMAT), el DLR (Centro aeroespacial alemán), ETH (Escuela Politécnica Federal de Zúrich, Suiza) y PROMES (unidad de investigación del CNRS, Centro Nacional para la Investigación Científica de Francia). Cada año se encarga una de las instituciones de organizarlo en su país.

Los estudiantes de doctorado de las 4 instituciones presentan sus trabajos, y, además, se invita a estudiantes de otras instituciones que trabajen en este ámbito, como es el caso de la Unidad de Procesos de Alta Temperatura del Instituto IMDEA Energía.

Este año la organización le correspondía al DLR, teniendo lugar en una de las ciudades más visitadas de Europa, Berlín.

Durante los 3 días del coloquio, se presentaron 35 trabajos de tesis enmarcados en los siguientes ámbitos:

  • Termoquímica solar
  • Tratamiento de agua y fotoquímica solar
  • Fotovoltaica concentrada
  • Electroquímica solar
  • Almacenamiento térmico de energía
  • Materiales, medidas y caracterización
  • Sistemas de concentración solar

Este evento anual sirve para poner en común los últimos avances en el ámbito de la energía solar concentrada y, además, es útil para conocer a los investigadores del sector y como entrenamiento en presentaciones para los estudiantes de doctorado.

De la Unidad de Procesos de Alta Temperatura del Instituto IMDEA Energía participaron dos investigadoras. Elena Díaz, que presentó su trabajo bajo el título “Integration of fuel cells in solar thermal plants” y Lucía Arribas con “Directly irradiated fluidized bed reactor for solar thermochemical applications”.

Etiquetas:

Centrales solares basadas en receptores de partículas ¿El futuro de la CSP?

Autor: Miguel A. Reyes-Instituto IMDEA Energía

Actualmente el 23.7% de la energía eléctrica total producida a nivel mundial es de origen renovable frente al 76.3% producida por fuentes no renovables [1]. En este balance de energía global, el 1.2% es producido mediante energía solar fotovoltaica mientras que el 0.4% lo comparten la energía geotérmica, la solar de concentración CSP y la de los océanos (figura 1).

Figura 1. Distribución en la producción de energía eléctrica durante el año 2015 [1]

A pesar de la todavía escasa contribución de la energía solar y en especial de la CSP al mix del mercado energético global, está probado que la energía del sol es una fuente inagotable capaz de cubrir la totalidad de las necesidades energéticas del planeta con las tecnologías actuales. Una de las principales preocupaciones de IMDEA Energía y en concreto de su Unidad de Procesos a Alta Temperatura es el estudio y mejora de los sistemas de energía solar concentrada (CSP) con el fin de mejorar su eficiencia y competitividad. En este contexto, IMDEA Energía está investigando activamente en la utilización de lechos fluidizados de partículas para su aplicación en centrales CSP para el almacenamiento y el sistema de receptor central (figura 2).

Figura 2. Esquema de una planta CSP utilizando lecho fluidizado de partículas como fluido térmico en el receptor y sistema de almacenamiento

La utilización de lechos fluidizados de partículas en las centrales CSP de torre presenta multitud de ventajas frente a los fluidos térmicos y de almacenamiento convencionales (sales fundidas, aceite térmico o vapor):

  • Se pueden alcanzar temperaturas muy elevadas (1,000 ºC)
  • No existe riesgo de congelación por temperaturas bajas (sales fundidas)
  • Facilidad de transporte
  • Facilidad de almacenamiento
  • Bajo coste

Sin embargo, la utilización de lechos fluidizados todavía presenta algunos retos en los que IMDEA Energía está trabajando actualmente:

  • Diseño de intercambiadores de calor basados en lechos fluidizados (para el intercambio térmico entre las partículas y los fluidos de trabajo)
  • Diseño de reactores solares indirectamente irradiados
  • Estudios de integración para plantas CSP basadas en lechos fluidizados

Estos retos se están abordando desde las perspectivas experimental y numérica a través de diferentes proyectos de investigación como CSP2 [3], STAGE-STE [4], NEXT-CSP [5] o ARROPAR-CEX [6].

 

[1]       REN21 Renewable Energy Policy Network for the 21st Century. Renewables 2016. Global Status Report. 2016.

[2]        Spelling J, Gallo A, Romero M, González-Aguilar J. A High-efficiency Solar Thermal Power Plant using a Dense Particle Suspension as the Heat Transfer Fluid. Energy Procedia 2015; 69:1160–70. doi:10.1016/j.egypro.2015.03.191.

[3]        Concentrated Solar Power in Particles European Project CSP2. European Commission. 2015. http://www.csp2-project.eu/

[4]        STAGE-STE EERA – European Energy Research Alliance. http://www.stage-ste.eu/

[5]        Home – Next-CSP. http://next-csp.eu/

[6]        ARROPAR-CEX: http://www.energia.imdea.org/investigacion/proyectos/arropar-cex

Etiquetas:

Proyecto Oresol

Autor: Thorsten Denk

Según la planificación de la Agencia Espacial Europea (ESA), en las próximas décadas, el foco de la exploración espacial tripulada volverá a la luna con el objetivo de establecer una presencia humana permanente (“Moonvillage”). El recurso más importante que se necesitará allí es el oxígeno, tanto para consumo humano como para carburante de cohetes. Si se consiguiera obtener oxígeno in situ en la luna, se ahorraría una parte muy sustancial y costosa de transporte de carga desde la tierra.

El Proyecto DeMoLOP de la Red ERA-STAR Regions (ERA – Space Technologies Applications & Research for the Regions and Medium-Sized Countries – CA-515793-ERA-STAR REGIONS), financiado por la Comisión Europea ha sido el inicio de esta investigación que se está realizando en la Plataforma Solar de Almeria.

En el proyecto DeMoLOP se pretendía investigar la obtención de oxígeno a partir de regolito lunar mediante energía solar concentrada, con el objeto de desarrollar un sistema de demostración completo consistente en: (1) un sistema de extracción de regolito (2) un sistema de reacción para la obtención de oxígeno y (3) un sistema de post-procesamiento para el oxígeno. El proyecto se ha mantenido con recursos propios bajo el nombre de “ORESOL” y se ha centrado en la ejecución del punto 2), desarrollo, construcción, ensayo y caracterización de un dispositivo capaz de llevar a cabo la reacción química con radiación solar concentrada para la ganancia de oxígeno a partir de un “lunar soil simulant” fabricado por la NASA.

El regolito (polvo) lunar es rico en oxígeno (hasta 45%-masa), pero los enlaces químicos son muy fuertes, lo que significa que para su obtención hacen falta temperaturas muy elevadas, por encima de 800ºC. Como consecuencia de estudios previos, se ha seleccionado como reacción química más favorable la reducción del componente del regolito lunar, denominado ilmenita, con hidrógeno a agua, seguida de una electrólisis para la obtención del oxígeno y recuperación del hidrógeno.

FeTiO3 + H2 -> Fe + TiO2 + H2O
2 H2O -> 2 H2 + O2

Una posibilidad atractiva para suministrar la energía necesaria es utilizar sistemas de radiación solar concentrada, que permiten proporcionar altas densidades de flujo energético con las que sería viable alcanzar las temperaturas necesarias para llevar a cabo el proceso.

El proyecto Oresol sólo es el primer paso hacía una planta de producción de oxígeno lunar, por eso se ha simplificado fuertemente el proceso. La investigación se centra en primer lugar en el paso clave del proceso, que es el reactor solar. Como concentrador solar se utiliza el Horno Solar de la Plataforma Solar de Almería. Como concepto del reactor Oresol se eligió un reactor de lecho fluidizado de baja expansión con operación en continuo, radiación solar concentrada en vertical, y absorción directa, quiere decir a través de una ventana de cuarzo. El reactor está diseñado en el caso de operación con hidrógeno puro para la producción de hasta 700g de agua cada hora, consumiendo en este tiempo aprox. 60 kg de regolito. A finales de abril de 2017 se ha concluido la primera etapa de ensayos. Se ha demostrado con éxito el funcionamiento del reactor con radiación solar altamente concentrada por encima de 900ºC y se han hechos los primeros pasos de producción de agua a partir de la arena lunar.

 

Etiquetas: