Membranas poliméricas para baterías de Li-ion

Autor: Ricardo Escudero Cid, Pilar Ocón-UAM

Uno de los mayores problemas con el que se enfrentan los gobiernos en la actualidad es el aumento de la contaminación en las grandes ciudades. Este preocupante aumento de la polución se debe en gran medida a la dependencia que existe de combustibles fósiles en el sector energético y en mayor medida en el transporte. Es por eso que, en los últimos meses en ciudades grandes como Madrid se están alcanzando límites preocupantes de contaminación que suponen un riesgo para la salud de sus habitantes. Es por eso que se están tratando de estudiar y desarrollar nuevas tecnologías capaces de abastecer las necesidades de la población, pero causando menores daños medioambientales y mejorando el bienestar de la sociedad.

En la actualidad la mayor dependencia de combustibles fósiles contaminantes se encuentra en el transporte que, a su vez, se encuentra principalmente en las ciudades y es el causante de la alta contaminación de las mismas. Por todo ello, hoy en día se están estudiando multitud de alternativas para el transporte sostenible. Además del incremento de medios de transporte públicos más ecológicos y basados en tecnologías no contaminantes se están realizando grandes avances para la mejora de medios de transporte privados basados en motores híbridos o eléctricos.

Los coches eléctricos son, a día de hoy una realidad y una gran promesa para los próximos años con grandes inversiones de las empresas de automoción. Para poder llevar a cabo un mayor desarrollo de estas tecnologías una de las claves se encuentra en las baterías de este tipo de vehículos, las encargadas de asegurar una alta autonomía necesaria para su implantación a gran escala. Unas de las baterías más extendidas y a la vez más prometedoras para su uso en este tipo de automóviles son las de Li-ion, ya que presentan una alta densidad energética.

Figura 1. Comparación de diferentes tecnologías de baterías dependiendo de su densidad de energía volumétrica y másica [1].

Dentro de este tipo de baterías se encuentran dos grandes grupos, las de electrolito líquido, más tradicionales, y las que usan materiales poliméricos como electrolito sólido. Las de electrolito líquido son las más extensamente utilizadas para este tipo de aplicaciones por su alta conductividad iónica. A pesar de eso, muestran ciertos problemas de seguridad asociados a los ánodos de litio metálico, sus solventes orgánicos volátiles e inflamables y las posibles pérdidas de electrolito. Las baterías de electrolito solido presentan importantes ventajas mejorando su seguridad, flexibilidad y procesabilidad.

Debido a estas ventajas en los últimos años se están haciendo grandes avances en el estudio de este tipo de baterías de membrana polimérica. Las principales características que se buscan en los materiales poliméricos son: alta conductividad iónica cercana a 10-4 S·cm-1 a temperatura ambiente, apreciable transferencia de Li+ con valores próximos a la unidad, buenas propiedades mecánicas, estabilidad en amplia ventana electroquímica próxima a los 4–5 V vs. Li/Li+ y excelente estabilidad química y térmica [2].

Son diferentes las membranas que se están estudiando en la actualidad para su uso en este tipo de dispositivos. Entre los tipos más investigados se encuentran los electrolitos poliméricos sólidos secos (dry-SPE), los sistemas de polímero en sal y los electrolitos poliméricos conductores de Li único.

El primero de ellos, dry-SPE, consiste en una matriz polimérica y una sal de Li. Normalmente poseen una baja conductividad iónica, lo que supone un gran problema para su utilización en aplicaciones reales. La manera de aumentar esa conductividad se realiza modificando la matriz polimérica llegando a incrementarla en 1 o 2 órdenes de magnitud. El segundo tipo de membranas bajo estudio, las de polímero en sal, se lleva a cabo al intentar incrementar la conductividad aumentando la cantidad de sal en la membrana y llegando a valores de composición en peso superiores al 50%. Esto permite llegar a valores elevados en conductividad y en transferencia de iones comprometiendo en parte las propiedades mecánicas del material.  En ambos casos hay una migración de los aniones que produce una importante bajada en conductividad. Para ello se está tratando de estudiar materiales poliméricos capaces de evitar este problema. Por un lado, se trata de anclar los aniones al polímero y por otro se añade un receptor de los aniones que interactúe con ellos mejorando el rendimiento final del dispositivo.

Los diferentes tipos de membranas que se están estudiando en la actualidad muestran interesantes propiedades que permiten ser optimista con la implantación de éstas en la tecnología actual con el fin de mejorar las prestaciones de las baterías de Li-ion así como mejorar sus medidas de seguridad. Todo esto supone un gran reto y a la vez supondrá un gran avance en las tecnologías futuras.

 

Referencias:

[1] Tarascon J-M., Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414, 359-367.

[2] Long L., Wang S., Xiao M., Meng Y. J. Mater. Chem. A, 2016, 4, 10038–10069.

Compartir:

Deja un comentario