‘Energía (general)’

Tratamiento de metano con tecnología de metales líquidos

Autores: Ángel Martínez Rodríguez,  Alberto Abánades Velasco

Grupo de Investigaciones Termoenergéticas, Universidad Politécnica de Madrid

RESUMEN

Se están desarrollando nuevos reactores para procesos a alta temperatura basados en el uso de metales líquidos, los cuales son capaces de permanecer en estado líquido con una muy baja presión de vapor hasta más allá de los 1500 ºC. Esas características termofísicas, junto con su alta conductividad/difusividad térmica, los hace muy adecuados para el potencial tratamiento de hidrocarburos. Se busca realizar un avance tecnológico significativo para lograr el desarrollo de un reactor de burbujeo en metal líquido para el tratamiento de gas natural y biogás crudo (una mezcla de CH4 y CO2) empleando energía solar concentrada, pudiendo ser viable a gran escala. El proyecto tiene como objetivo verificar experimentalmente reactores de metal líquido para llevar a cabo la pirólisis y el reformado seco de metano, para obtener gas de síntesis (CO y H2) y partículas sólidas de carbono. Este tipo de reactores son inéditos, pero pueden ser claves en el futuro para el desarrollo de reacciones a muy alta temperatura, incluida la reducción de CO2, lo que implica: 1) Sistemas de aporte de energía térmica  basado en energía solar concentrada ; 2) un sistema de aporte de reactantes, fundamentalmente hidrocarburos y CO2,  3) un mecanismo de extracción continua de partículas, que en los casos que se pretende realizar serían de carbono, y 4) caracterización físico-química del carbono producido, y la evaluación de aplicaciones del proceso, para estimar su viabilidad. En caso de comprobar la operación con éxito del reactor propuesto a escala experimental (aprox. 1 kW-H2), y la viabilidad de las aplicaciones, se estará en condiciones de abordar etapas de desarrollo industrial.

ABSTRACT

New reactors are being developed for high temperature processes based on the use of liquid metals, which are able to remain in a liquid state with a very low vapor pressure up to more than 1500 ° C. These thermophysical characteristics, together with their high conductivity / thermal diffusivity, make them very suitable for the potential treatment of hydrocarbons. A significant technological advance is sought to achieve the development of a liquid metal bubbling reactor for the treatment of natural gas and raw biogas (a mixture of CH4 and CO2) using concentrated solar energy, and it can be viable on a large scale. The project aims to experimentally verify liquid metal reactors to carry out dry methane reforming, to obtain synthesis gas (CO and H2) and solid carbon particles. These types of reactors are unpublished, but they can be key in the future for the development of reactions at very high temperature. The idea is to develop systems to carry out the treatment of hydrocarbons, including the reduction of CO2, which implies: 1) Thermal energy input systems based on concentrated solar energy; 2) a system for the supply of reactants, mainly hydrocarbons and CO2, 3) a mechanism for continuous extraction of particles, which in the cases that are intended to be carbon, and 4) physical-chemical characterization of the carbon produced, and the evaluation of process applications, to estimate its viability. If the operation of the proposed reactor is tested successfully on an experimental scale (approx. 1 kW-H2), and the viability of the applications, it will be able to address stages of industrial development.

Artículo de difusión

El desarrollo de nuevos procesos tecnológicos es imprescindible para lograr la reducción de emisiones de gases de efecto invernadero en procesos energéticos clave que aumenten la sostenibilidad de nuestra Sociedad y ayuden a cumplir con muchos de los Objetivos de Desarrollo Sostenible (ODS). En particular, la integración del tratamiento de materiales en una economía circular necesita nuevos procesos innovadores. Los ODS 7 (energía asequible y no contaminante), y ODS 13 (acción por el clima) se conectan directamente con el desarrollo de nuevos procesos químicos innovadores. Entre esos procesos está, evidentemente, el tratamiento de hidrocarburos y de reducción de CO2, en este caso para producir vectores fundamentales para la transición energética, como H2 y gas de síntesis, con la captura efectiva de C en forma sólida, o/y la reducción de CO2, que permita cerrar los ciclos antropogénicos de carbono.

La descomposición del metano (que podría ser extrapolable a otros hidrocarburos gaseosos), también llamada pirólisis de metano, consiste en el desarrollo de la reacción química (1). Este proceso permite producir hidrógeno sin emisiones, y la generación de Carbono de alta calidad para aplicaciones aún poco desarrolladas, como la manufactura de grafeno, óxido de grafeno, o fibras de carbono a gran escala.

Al emplear biogás crudo como corriente de alimentación, tiene lugar la aparición de otra serie de reacciones derivadas del proceso de reformado de CO2-CH4, siendo la reacción principal el reformado seco de metano (2):

Descomposición metano:            CH4 → C + 2H2                       ΔH=74,5 kJ/mol-H2         (1)

Reformado seco de metano:   CH4 + CO2 → 2CO + 2H2           ΔH=246,9 kJ/mol-H2                   (2)

La reacción de reformado seco permite el aprovechamiento de CO2 capturado, y su integración en la economía circular mediante su reducción química directa, así como su aplicación al tratamiento de gases crudos procedentes de la generación de biogás, que forman mezclas de CO2/CH4, susceptibles de ser transformadas por la reacción (2) en gas de síntesis, hidrogeno y carbono. En la Figura 1 se muestra una descripción general de las opciones de utilización de gas natural en función de las emisiones de CO2, y como la pirólisis de metano puede constituir una técnica de captura de carbono, para su integración en la economía circular.

Figura 1: Descripción general de las opciones de utilización de gas natural en función de las emisiones de CO2

El desarrollo de reactores de alta temperatura se hace imprescindible para lograr esos objetivos, en cuanto los procesos de reducción de CO2, o de pirólisis de hidrocarburos requieren altas temperaturas que permitan un grado alto de avance de la reacción, y reduzcan el uso de catalizadores, que en muchos casos implican una generación adicional de residuos y complejidad. En resumen, hay una cantidad bastante importante de datos relacionados con la descomposición de metano en lo que se refiere a niveles de conversión teóricos de la reacción, y al comportamiento de potenciales catalizadores, con temperatura de operación como las descritas en la Figura 2.

Figura 2: Rangos de temperatura de aplicación de técnicas de descomposición térmica de metano.

La viabilidad técnico-económica y ambiental de muchos de esos procesos se puede mejorar con el desarrollo de reactores de alta temperatura con metales líquidos. Las buenas propiedades termo-físicas de los metales líquidos pueden abrir una línea muy prometedora para el diseño de reactores de muy alta temperatura. La capacidad de transferencia térmica (difusividad, conductividad, …) es una de las claves para poder desarrollar reactores a gran escala, homogeneizando las condiciones internas del reactor, tal y como se necesitaría para aplicaciones industriales. Por otro lado, la alta conductividad térmica de los metales líquidos da lugar a una buena transmisión de energía a los enlaces moleculares, reduciendo la necesidad de catalizadores.

Los antecedentes de este proyecto se encuentran en los trabajos previos que se han desarrollado para la prueba de concepto de un reactor de metal líquido para pirólisis de metano (Geißler et al., 2016) (Abánades et al., 2016), y que ha sido reconocido como una tecnología de futuro obteniendo premios de innovación como el 2º puesto de la competición de ideas de EIT Raw Materials, o el premio de R&D de la Industria alemana del gas.

En particular, el desarrollo que se propone tiene una relación directa con la “Acción sobre cambio climático y eficiencia en la utilización de recursos y materias primas”, al tratarse de una tecnología para aprovechar residuos orgánicos, productos del tratamiento de biomasa y materias primas fósiles sin emisiones de gases de efecto invernadero en un escenario de captura de CO2. Cabe destacar que estos recursos, además de la obtención de carbono metalúrgico y gas de síntesis, produce hidrógeno, como una forma de “energía segura sostenible y limpia”. Por otro lado, el empleo de fuentes de energía renovables, como el biogás, es un paso adelante en la obtención de energía, junto con su hibridación con energía solar concentrada. Ambos objetivos están relacionados, siendo este proyecto un desarrollo tecnológico innovador para el uso de recursos energéticos de forma segura y sostenible con implicaciones claras como herramienta para combatir el cambio climático.

REFERENCIAS

Abánades, A., Rathnam, R. K., Geißler, T., Heinzel, A., Mehravaran, K., Müller, G., & Stückrad, S. (2016). Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen. International Journal of Hydrogen Energy, 41(19), 8159-8167.

Davis, S. J., Caldeira, K., & Matthews, H. D. (2010). Future CO2 emissions and climate change from existing energy infrastructure. Science, 238(5997), 1330-1333.

Geißler, T., Abánades, A., Heinzel, A., Mehravaran, K., Müller, G., Rathnam, R. K., & Weisenburger, A. (2016). Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Chemical Engineering Journa, 299, 192-200.

Contacto

Javier Muñoz Antón, Responsable en funciones  de Grupo UPM-GIT del Programa ACES2030-CM. – jamuñoz@etsii.upm.es

Coordina ACES2030-CM Manuel Romero del Instituto IMDEA Energía. 

Etiquetas:

Un novedoso sensor de agua y humedad impreso en 3D de bajo coste y flexible es capaz de detectar las más pequeñas cantidades de agua

Autor: José I. Martínez

En las más diversas áreas, desde el campo de la salud, la calidad alimentaria, la detección ambiental, la industria textil, la agricultura, así como en una gran variedad de aplicaciones tecnológicas e industriales, existe una creciente demanda de dispositivos sensores capaces de manifestar una respuesta inmediata mediante cambios simples y rápidos en presencia de moléculas específicas. Entre ellos, los sensores de agua y humedad se encuentran entre los más comúnmente empleados, siendo capaces de controlar y monitorizar la cantidad de agua presente en un determinado entorno o material. Por ejemplo, si un determinado aceite lubricante tiene una gran concentración de agua la lubricación de maquinaria o instrumentación pudiera no ser la más adecuada. De la misma forma, si hay demasiada agua en un combustible, éste  pudiera no combustionar de la manera más eficiente.

En una ambiciosa colaboración interdisciplinar entre científicos pertenecientes a la Universidad Autónoma de Madrid (UAM) y al Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), se ha desarrollado un novedoso sensor de bajo coste y muy flexible, fabricado mediante un material plástico no-tóxico basado en un polímero de coordinación unidimensional de cobre decorado con moléculas de timina, capaz de detectar cantidades de agua extremadamente pequeñas en aire o en solventes orgánicos. El polímero de coordinación de cobre, que constituye la parte funcional de este nuevo sensor, presenta una molécula de agua enlazada a cada átomo de cobre central.

La excelente capacidad sensora de este material tiene su origen en una transformación estructural debido a la pérdida de moléculas de agua del polímero de coordinación – observada mediante el uso de rayos-X de alta energía – bien con la temperatura (a partir de 60º) o mediante la competición con moléculas de solvente, lo que induce, de manera simultánea, un cambio significativo en su color desde un color púrpura a un color azul en condiciones de humedad. Una gran ventaja de este material es que este cambio estructural se puede revertir, y con ello su color, mediante su exposición al aire, poniéndolo en contacto con agua, o en un solvente orgánico con pequeñas trazas de agua.

Para la preparación del sensor el polímero de coordinación se mezcla con una tinta polimérica para impresión 3D químicamente inocua. Se han  impreso sensores con distintas formas y tamaños, los cuales fueron testados con una gran variedad de solventes conteniendo distintas cantidades de agua. Estos estudios demostraron que los sensores impresos resultaban incluso más sensibles a la presencia de agua que el compuesto polimérico de coordinación por sí solo gracias a su naturaleza porosa.

En distintos solventes, los sensores impresos pueden detectar un rango de entre 0.3% y 4% de agua en menos de 2 minutos. En aire pueden incluso detectar una humedad relativa del 7%. Cuando se secan, bien en un solvente libre de agua o mediante calentamiento, el material revierte su color azul de nuevo en púrpura. Un análisis exhaustivo del material muestra que es estable después de muchos ciclos de calentamiento, y que los compuestos de cobre se distribuyen de manera homogénea dentro del material de impresión. Estos sensores son estables en aire hasta 1 año y en entornos biológicos con pHs de entre 5 y 7, lo que sugiere un alto potencial para su aplicación como robustos sensores colorimétricos.

El resultado de esta investigación, presentado en la prestigiosa revista Advanced Functional Materials (Adv. Funct. Mater. 2019, 29, 1808424), abre la puerta al desarrollo de una nueva familia de materiales sensores impresos en 3D basada en la integración de polímeros de coordinación multifuncionales con polímeros orgánicos.

 

Fig. Distintas versiones de los dispositivos sensores impresos en 3D. Cuando se secan mediante calentamiento o en un solvente libre de agua el material sensor cambia su color a púrpura.

Etiquetas:

Hacia un ciclo sostenible de carbono

Autor: Juan José Vilatela García. Instituto IMDEA Materiales

El eje conductor de la ciencia de materiales de hoy en día se debe centrar prioritariamente en mitigar directa o indirectamente las emisiones de gases invernadero de la actividad humana. Estudios recientes nos dan una guía para navegar a través de los enormemente complejos retos tecnológicos asociados, poniendo el foco en transformar el transporte y la industria, contribuyentes de cerca del 62% de emisiones de CO2. Estamos urgidos también a acelerar el paso. A pesar de los loables objetivos de sostenibilidad liderados por Europa hacia el 2050, las proyecciones muestran una realidad alarmante; la producción de acero y aluminio, los materiales con mayores emisiones asociadas, se duplicarán en 30 años [1].

Una estrategia prometedora es el reemplazo de metales altamente emisores por nuevos materiales de carbono, más ligeros, evidentemente, pero sobre todo, fabricados mediante procesos de menores emisiones. El punto de partida es usar procesos para transformar catalíticamente una fuente de carbono, por ejemplo gas natural, en materiales estructurales y conductores eléctricos. De cara al objetivo de reducir emisiones mediante el reemplazo de metales, la reacción simplificada asociada nos permite analizar las distintas áreas a desarrollar

La energía suministrada al proceso contiene las mayores contribuciones a las emisiones y es una variable a minimizar. Para tener una métrica de comparación se puede considerar, por ejemplo, la huella de 10kg CO2/kg en la producción de aluminio [2]. En comparación, las emisiones en la fabricación de negro de humo (en inglés carbon black, CB) a partir de gas natural, son cercanas al 0.8 CO2/kg [3]. La perspectiva energética es aún más halagüeña si en el proceso se recupera el H2 y se utiliza como combustible. Visto desde otra perspectiva, los elementos estructurales y conductores del futuro se pueden fabricar como subproductos durante la generación de hidrógeno; una idea en la que ya apuesta el sector público-privado en EEUU [4], por ejemplo.

La utilidad práctica del proceso descrito por esta sencilla ecuación depende principalmente de las características del carbono resultante, es decir, de cuánto pueden competir con metales tradicionales. Y es aquí donde los detalles importan y por lo tanto donde la actividad científica es intensa. La capacidad de fabricar nanocarbonos y ensamblarlos en materiales macroscópicos como cables, fibras, telas, con propiedades superiores a las del acero y el aluminio, nos abre por primera vez en la historia, la puerta a considerar seriamente la posibilidad de usar estos procesos transformativos a gran escala como vehículos de reducción de emisiones. Desde distintos ángulos, diversas iniciativas a nivel mundial persiguen este objetivo basado en nanocarbonos: el desarrollo de nuevos cables eléctricos en Japón, la nueva generación de materiales compuestos estructurales en Corea impulsada por LG Chemical, el centro para la transformación de carbono en Houston, EEUU, impulsado por la industria petroquímica [5], y la producción masiva de nanotubos de carbono presentada por el mismo Putin en la cumbre de París de las Naciones Unidas [6].

Esquema  de la fabricación de fibras estructurales y conductoras a partir de la síntesis de nanotubos de carbono (CNT) mediante descomposición catalítica de una fuente de carbón (izquierda). Ejemplos de imágenes de la fibra durante su fabricación e hilado continuo y su estructura de CNTs (derecha).

Con esta perspectiva investigadores de IMDEA Materiales, IMDEA Energía e IMDEA Nanociencia llevamos casi una década trabajando conjuntamente en la investigación de nanotubos de carbono, centrados en tres áreas principales: entender y controlar mejor la reacción de síntesis, ensamblar nanotubos de maneras que potencien sus propiedades axiales, y su integración en aplicaciones principalmente en aligeramiento y gestión energética en transporte. Recientemente, realizamos estudios sobre la ruta térmica de descomposición de distintos precursores de carbono in-situ durante la fabricación de fibras de CNTs [7]. Esto permitió encontrar nuevas herramientas para aumentar el rendimiento del proceso y las propiedades del material resultante a través de la elección de precursores de carbono. Actualmente, nuestros esfuerzos buscan continuar dando pasos en la mejora de propiedades de materiales a base de nanocarbonos a través del control molecular y del ensamblado, así como en el desarrollo de herramientas analíticas para evaluar el impacto de estas tecnologías desde una perspectiva de sostenibilidad global.

[1] Sustainable Materials Without the Hot Air: Making Buildings, Vehicles and Products Efficiently and with Less New Material. Julian M. Allwood, Jonathan M. Cullen, UIT Cambridge Ltd, 2015.

[2] United Nations: Climate Change and Transnational Corporations – Analysis and Trends. U. N. Centre on Transnational Corporations, Environment Series 2, 1992, ST/CTC/112, ISBN 92‐1‐104385‐9, Chapter 7 “Production of Energy Intensive Metals”.

[3] http://www.remanufacturing.org.uk/pdf/story/1p158.pdf.

[4] R&D Opportunities for Development of Natural Gas Conversion Technologies for Co-Production of Hydrogen and  Value-Added Solid Carbon Products, Lawrence Livermore Laboratory, 2017

[5] https://news.rice.edu/2019/01/28/turning-natural-gas-into-carbon-nanotubes-cuts-energy-use-carbon-dioxide-emissions/.

[6] https://www.climatechangenews.com/2016/01/06/vladimir-putins-global-warming-fix-carbon-nanotubes/.

[7] X. Rodiles et al, Nature Scientific Reports, (2019) 9:9239.

Contacto

Juan José Vilatela, Responsable de Grupo de Nanocompuestos Multifuncionales de IMDEA Materiales, y miembro del Programa FotoArt-CM.

Etiquetas:

De la cocina al laboratorio: el uso de la sal para desacoplar grafeno de sustratos metálicos.

Autores: Irene Palacio y José Ángel Martín Gago. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

En el 2004 el grafeno irrumpe en el panorama científico con la promesa de ser uno de los principales materiales del futuro tecnológico debido a sus excelentes propiedades tanto electrónicas como mecánicas, ópticas…. Es por ello, que desde entonces una gran parte de la comunidad científica ha realizado un gran esfuerzo en el estudio y desarrollo de este material y sus posibles aplicaciones. De hecho, la Comunidad Europea  financia con 1 Billón de euros un proyecto coordinado con diferentes laboratorios europeos sobre grafeno conocido como Graphene Flagship desde el año 2013 y con duración hasta el 2023.

La síntesis de grafeno sobre metales mediante diversas técnicas está ya bastante optimizada, sin embargo, la fuerte interacción entre el grafeno y el sustrato es el principal punto problemático a la hora de la aplicación directa de esté material en la electrónica. Para solventar este problema, diversas soluciones han sido propuestas: desde la síntesis directa en sustratos aislantes, a la transferencia de la lámina de grafeno a otros sustratos más relevantes o el desacoplo de grafeno del sustrato. Es en ésta última propuesta donde el  grupo ESISNA del Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) en colaboración con la línea CIRCE del Sincrotrón ALBA de Barcelona y el Centro de Física de Materiales en San Sebastián,  ha desarrollado una nueva metodología para el desacoplo de grafeno de superficies metálicas mediante la fotodisociación de sal (NaCl).

Concretamente, el trabajo, recientemente publicado en la revista 2D Materials, demuestra cómo desacoplar el grafeno sintetizado sobre un metal de una forma sencilla y reversible. La idea es evaporar una lámina delgada de sal sobre la muestra de grafeno para luego irradiar la muestra con fotones altamente energéticos. Éste haz de fotones, disocia las moléculas de NaCl, y mientras que los iones de cloro se desorben, los de sodio se intercalan a través del grafeno desacoplándolo del sustrato. Además de desacoplarlo, logran dopar el grafeno (tipo n), lo que es una ventaja para ciertas aplicaciones. El proceso es totalmente reversible, pudiéndose recuperar la muestra original y sin dañar de grafeno mediante un calentamiento.

Esta nueva metodología tiene un gran potencial tecnológico, ya que es simple y eficaz  y se sirve de un elemento, la sal, abundante y barato.

Esquema  y patrones de difracción demostrando el desacoplo de grafeno de una superficie metálica mediante la fotodisociación de sal, así como la reversibilidad del proceso.

Publicación: I.  Palacio et al.  2D Materials, 6, 025021 (2019)

Contacto

Jose Ángel Martín Gago, Responsable de Grupo ESSISNA del Programa FotoArt-CM. – gago@icmm.csic.es

Coordina FotoArt-CM Víctor A. de la Peña O´Shea el Instituto IMDEA Energía.

Etiquetas:

Consumo eléctrico asociado a la implantación del vehículo eléctrico en España

Autores: Zaira Navas, Diego García y Diego Iribarren-Instituto IMDEA Energía

Desde hace algunos años, el sector del transporte está experimentando un gran cambio debido a la entrada de vehículos propulsados por combustibles alternativos menos contaminantes que los convencionales. Un ejemplo de ello es el fomento del vehículo eléctrico como posible sustituto de los vehículos de diésel y gasolina. En este sentido, es interesante analizar el consumo de los vehículos eléctricos y la forma en la que afecta al sistema eléctrico nacional. Para saber qué consumo eléctrico supone la utilización de este tipo de vehículos, es necesario tener en cuenta los consumos y kilometrajes específicos en función del servicio al que estén destinados (uso público o privado, transporte de pasajeros o de mercancías, etc.). Estos valores se exponen en la tabla adjunta:

 

En 2015 se registraron en España 15.136 vehículos eléctricos [16]. Asumiendo los parámetros especificados en la tabla superior, se obtiene que el consumo eléctrico asociado fue de 21,37 GWh en 2015. Este extra de demanda eléctrica apenas supone un 0,008% sobre la demanda nacional de electricidad.

Se estima que la flota de este tipo de vehículos va a aumentar considerablemente en los próximos años. Si en 2030 se consiguiese alcanzar la cifra de 3.000.000 de vehículos eléctricos en España, y asumiendo una distribución por categoría de acuerdo a [17], el extra de consumo sería de aproximadamente 2.697 GWh. Aunque esta cifra puede parecer muy elevada en comparación con la de 2015, dicha demanda tan solo supondría un 0,86% del total de electricidad.

Por tanto, se puede concluir que el consumo eléctrico adicional provocado por la implantación de vehículos eléctricos sería asumible desde el punto de vista de la generación. Aun así, la entrada de esta flota de vehículos obliga a que se continúe investigando otros aspectos técnicos y de gestión de la red que garanticen el buen funcionamiento del sistema y eviten problemas de abastecimiento y sobrecargas en horas pico. En otras palabras, será necesario un esfuerzo para planificar la demanda de una forma inteligente, por ejemplo, incentivando la carga nocturna.

Referencias

[1]       https://www.xataka.com/vehiculos/las-motos-electricas-zero-llegan-a-los-325-kilometros-de-autonomia

[2]       ecoTECHNOLOGY forVehicles, “Vectrix maxi-scooter personal electric vehicle test results report”, octubre 2009.

[3]       http://www.zeromotorcycles.com/es/range

[4]       https://pushevs.com/2016/11/23/electric-cars-range-efficiency-comparison/

[5]       INL, “Electric cars: Analysis results.” 2014.

[6]       https://www.afdc.energy.gov/fuels/ethanol_blends.html

[7]       https://www.nissan.es/vehiculos/nuevos-vehiculos/e-nv200.html

[8]       https://www.xataka.com/automovil/guia-de-compras-de-coches-electricos-2017-43-modelos-que-estan-o-estaran-en-el-mercado

[9]       NREL, “Smith Newton Vehicle Performance Evaluation – Cumulative Time of Day When Driving”, 2014.

[10]     https://www.daimler.com/products/trucks/mercedes-benz/mercedes-benz-electric-truck.html

[11]     https://www.quadis.es/articulos/fuso-ecanter-el-primer-camion-ligero-electrico/906869

[12]     https://www.diariomotor.com/noticia/record-proterra-autobus-electrico/

[13]     http://forococheselectricos.com/2017/06/hyundai-presenta-autobus-electrico-autonomia.html

[14]     Ministerio de Fomento, “Observatorio de costes del transporte”, 2013.

[15]     http://www.irizar.com/alcanzado-el-gran-reto-el-autobus-urbano-100-electric-del-grupo-irizar-es-ya-una-realidad/

[16]     Ministerio de Industria, “Marco de Acción Nacional de Energías Alternativas en el transporte”, 2016.

[17]     Ministerio de Fomento, “Observatorio del Transporte y la Logística en España – informe anual 2016”, 2017.

 

Etiquetas:

SIMBIOCAT IV. Catálisis para el medio ambiente: eliminación de contaminantes y “química verde”

Autora: Raquel Portela-ICP-CSIC

El Instituto de Catálisis y Petroleoquímica (ICP), perteneciente al CSIC, viene organizando en los últimos años las jornadas SimbioCAT – Simbiosis entre la Academia y la Industria, “de la investigación a la aplicación industrial”, orientadas a empresas e investigadores con proyectos afines, en colaboración con el Parque Científico de Madrid. El objetivo es que las empresas del sector conozcan las líneas de I+D y las actividades que se realizan en el instituto para fomentar la colaboración. Para ello, durante el encuentro se habilitan salas de reunión por si surgieran propuestas de trabajo que debatir entre los investigadores y los asistentes. La primera jornada de estas características, SimbioCAT I, se realizó en 2011 y estuvo dedicada a “Biocombustibles, bio-refinerias y valorización de los subproductos”, mientras que SimbioCAT II, en 2013, se centró en “Biocatálisis, transformaciones enzimáticas y biomateriales”. El lema de SimbioCAT III , realizado en 2015, fue “Aplicaciones de la catálisis en el área de la energía”.

El próximo jueves 18 de enero de 2018 se celebrará en las instalaciones del Instituto de Catálisis y Petroleoquímica la cuarta edición de estas jornadas. El lema de SimbioCAT IV es “Catálisis para el medio ambiente: eliminación de contaminantes y química verde”.  La asistencia es gratuita, previa inscripción; la jornada va dirigida gestores de residuos, depuradoras de aguas, empresas con necesidad de eliminar contaminantes, industrias químicas que quieran implantar procesos más limpios, organismos con responsabilidad medioambiental, ayuntamientos, etc… En las ponencias se hablará de las últimas tendencias en la eliminación de contaminantes y el diseño de procesos químicos más verdes y al finalizar la jornada habrá un aperitivo con orientado a fomentar el establecimiento de nuevas colaboraciones.

El programa de la jornada es el siguiente:

 9:45 Bienvenida: Dr. Jose Carlos Conesa Cegarra, Director del Instituto de Catálisis y Petroleoquímica.

10:00 Ponencias de investigadores del ICP: eliminación de contaminantes

Dra. Ana Bahamonde, “Aplicación de la fotocatálisis solar para el control de la contaminación ambiental”.

Dr. Marcos Fernández “Aprovechamiento de luz solar en procesos foto(termo)catalíticos de descontaminación en fase gas y líquida”.

Dr. Pedro Ávila, “Chimeneas que no contaminan”.

Dr. Carlos Márquez, “Diseño de soportes porosos para la inmovilización eficiente de lacasas con aplicación potencial en la eliminación de compuestos fenólicos en aguas residuales”.

Dr. Rufino Navarro, “Eliminación de NOx a baja temperatura en gases de escape procedentes de motores diésel”.

11:15 Café

11:45 Ponencias de investigadores del ICP: eliminación de contaminantes y química verde

Dr. Miguel Bañares “Monitorizando remediación de contaminantes y valorización de productos secundarios”.

Dr. Manuel Sánchez, “Materiales sostenibles MOFs en aplicaciones ambientales: eliminación de contaminantes gaseosos y revalorización de CO2”.

Dr. Enrique Sastre “Producción de hidrocarburos sintéticos por conversión de metanol: una ruta para el reciclado de CO2”.

Dra. Consuelo Álvarez “CO2 como materia prima para la síntesis de productos químicos y combustibles a través de la reducción catalítica a monóxido de carbono con hidrógeno”.

Dr. Miguel Alcalde “Enzimas modificadas genéticamente por evolución dirigida: aplicaciones desde la biorremediación hasta los nuevos procesos químicos “verdes””.

13:00 Ponencia sobre instrumentos financiación a cargo de AYMING

D. Manuel Díez Díaz y D. Samuel Botija “Como hacer más con menos: herramientas para financiar tus Proyectos I+D+i y mejorar su rentabilidad” (Consultora AYMING)

Más información y reservas: Dra. Sara Junco: s.junco@csic.es

Etiquetas:

Proceso TriVersa: un paso adelante para optimizar el rendimiento de la biorrefinería lignocelulósica

La biomasa lignocelulósica puede fraccionarse en sus principales componentes para sustituir a los productos químicos derivados del petróleo usados actualmente en la vida diaria. Sin embargo, es necesario obtener un elevado rendimiento de aprovechamiento para que el proceso sea sostenible económica y ambientalmente. En este ámbito, un novedoso proceso de biorrefinería propuesto recientemente por el grupo del profesor J.A. Dumesic, denominado proceso TriVersa, plantea una estrategia integral de conversión de una biomasa tipo (en concreto, el abedul de papel) que permite valorizar hasta un 80% de la materia prima de partida obteniendo productos útiles con salida real en el mercado.

Autor: [Gabriel Morales, Universidad Rey Juan Carlos]

El grupo del Prof. James A. Dumesic, de la Universidad de Wisconsin-Madison, EE.UU., es uno de los grupos punteros a nivel mundial en el ámbito de la catálisis heterogénea aplicada a la producción sostenible de biocombustibles y bioproductos (obtenidos a partir de biomasa vegetal, principalmente de tipo lignocelulósico). Recientemente han desarrollado un proceso de fraccionamiento secuencial que maximiza la conversión de la biomasa lignocelulósica (hasta un 80%) dando lugar a productos comercializables, abriendo de este modo la puerta a un proceso comercial de biorrefinería lignocelulósica económicamente viable. Dicho método de fraccionamiento preserva el valor de los tres componentes primarios (Figura 1): (i) celulosa, que es convertida en pulpa de papel para la producción de fibras y compuestos químicos; (ii) hemicelulosa, que es convertida en furfural (molécula plataforma); y (iii) lignina, que es convertida en productos carbonosos (espuma de carbón, fibra de carbono o ánodos de batería). En global, el proceso permitiría obtener unos ingresos de más de 500 dólares por tonelada seca de biomasa. Adicionalmente, una vez que la tecnología se haya asentado y haya reducido los riesgos iniciales de inversión, puede extenderse fácilmente a otros bioproductos y biocombustibles, tales como azúcares fermentables, bioetanol, biocombustibles avanzados, productos químicos especializados, etc. Esto facilitaría el desarrollo del concepto de biorrefinería lignocelulósica renovable integrada de un modo competitivo con una refinería de petróleo actual.

Figura 1. Proceso TriVersa aplicado a abedul de papel.

La clave del proceso es la eficacia y alto rendimiento del fraccionamiento de la biomasa en sus componentes individuales, preservando el valor de cada una de las fracciones. Este fraccionamiento es posible gracias al uso de γ-valerolactona (GVL), un disolvente renovable y sostenible derivado de la propia biomasa, que ha demostrado propiedades favorables en el procesamiento de la biomasa lignocelulósica. El empleo de GVL como disolvente ofrece ventajas únicas en virtud de sus propiedades fisicoquímicas, y resuelve los problemas típicos asociados al fraccionamiento de este tipo de biomasa, tal como una alimentación en continuo de biomasa (debido a la baja presión de vapor de la GVL), una alta carga de biomasa (debido a la elevada solubilidad de la lignina y los azúcares en mezclas GVL/agua), un fraccionamiento limpio de los componentes (debido al uso de condiciones de proceso moderadas), y la capacidad de procesar eficazmente las corrientes con disolvente, lo que minimiza el uso de operaciones de separación que incrementan los costes. Además, la GVL puede producirse a partir de biomasa en el mismo proceso para compensar las pérdidas, haciendo que el proceso sea de ciclo cerrado. La Figura 2 muestra un diagrama de flujo de la estrategia de biorrefinería propuesta para integrar las corrientes de productos de la biomasa usando GVL como disolvente.

Figura 2. Diagrama de flujo del proceso TriVersa.

 Según el proceso TriVersa, 1000 kg de biomasa seca pueden convertirse en 402 kg de celulosa, 156 kg de precursor de lignina para espuma de carbono de alta pureza y 138 kg de furfural (Figura 1). Estos rendimientos corresponden a la conversión de prácticamente un 70% de la masa inicial y >75% del contenido en carbono en productos de valor añadido (Figura 3). El rendimiento final de celulosa tras el tratamiento de blanqueo es similar a otras tecnologías convencionales (como el proceso Kraft o el de sulfitos). La fácil separación de la lignina y la hemicelulosa usando como disolvente GVL da lugar a una celulosa con una calidad de pasta de disolución. Las propiedades de esta celulosa (con un contenido de hexosas >96%, viscosidad CED de 5 a 15 cP, número Kappa <20) son similares a las de otras pulpas de disolución comerciales, lo que indica que este material es adecuado para la producción comercial de textiles (p.ej., rayón) y otros derivados de celulosa de valor añadido. Por otra parte, la cantidad de biomasa convertida aprovechada puede aumentar hasta el 80 wt% si se recuperan los subproductos ácidos: ácido acético (66 kg por tonelada de biomasa seca), ácido fórmico (27 kg) y ácido levulínico/HMF (10 kg). Considerando el proceso global, los rendimientos de valorización son significativamente más altos que los obtenidos con otras tecnologías de biorrefinería, como la producción de etanol celulósico (228 kg de etanol por tonelada, 22,8 wt%) o la operación de un molino de papel típico (de 400 a 500 kg por tonelada de biomasa), y similares a los obtenidos en procesos que se quedan en productos intermedios, tales como azúcares.

 

 

Figura 3. Diagrama de Sankey del proceso integrado.

El principal reto de este proceso es controlar las pérdidas de disolvente. Aunque la GVL es estable en las condiciones de reacción y es de esperar que se produzcan pérdidas mínimas de disolvente por degradación o interacciones con moléculas derivadas de la biomasa, el trabajo experimental desarrollado por el grupo de Dumesic ha identificado otras pérdidas de disolvente en la salida de productos y en las etapas de lavado y procesado. En este sentido, se puede recuperar una cantidad significativa de GVL lavando la lignina con agua. Aunque esta etapa requiere energía adicional para recuperar la GVL, el coste del tratamiento del agua residual es reducido. En este escenario, las pérdidas de GVL se pueden reducir a tan solo 20 kg por tonelada de biomasa, o menos del 3% de los productos finales. La cantidad de GVL de reposición necesaria puede reducirse si tanto el ácido levulínico como el hidroximetilfurfural (HMF) producidos en el proceso (unos 10 kg por tonelada de biomasa) son convertidos a GVL por hidrogenación.

 Referencia:

Science Advances 2017, Vol. 3, no. 5, e1603301.

Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization

David Martin Alonso, Sikander H. Hakim, Shengfei Zhou, Wangyun Won, Omid Hosseinaei, Jingming Tao, Valerie Garcia-Negron, Ali Hussain Motagamwala, Max A. Mellmer, Kefeng Huang, Carl J. Houtman, Nicole Labbé, David P. Harper, Christos T. Maravelias, Troy Runge, James A. Dumesic 

Etiquetas:

La primera planta en EE.UU. para la producción de biocarburantes a partir de resíduos sólidos urbanos llevará el sello de Abengoa

Abengoa, una de las principales empresas que hicieron realidad la comercialización de etanol de celulosa, regresa al sector de los biocarburantes para participar en la construcción de la primera planta de EE.UU. que convertirá los residuos sólidos urbanos en biocombustibles para la aviación.

Autor: [Antonio D. Moreno – CIEMAT]

Tras recibir la notificación oficial por parte de las autoridades estadounidenses, Abengoa se encuentra en disposición de comenzar la construcción de esta nueva planta –por encargo de la empresa Fulcrum BioEnergy– en el estado de Nevada. Además de la construcción y puesta en marcha del proyecto, la empresa española será responsable de la ingeniería y el diseño de la planta, que tiene previsto producir unos 35-40 millones de litros de combustible para la aviación a partir de basuras. Este contrato supone para la compañía una oportunidad importante de afianzar su posicionamiento en un sector en continuo crecimiento, y cuya demanda en biocombustibles seguramente se verá incrementada en los próximos años ante la perspectiva de aumento en los niveles atmosféricos de CO2.

Además de la obtención de biocombustibles, otro de los principales puntos fuertes del proyecto radica en la utilización de los residuos sólidos urbanos como material de partida, hecho que garantiza una mejor gestión de estos residuos inherentes a la actividad humana, evitando su acumulación en vertederos o su incineración y reduciendo por tanto su impacto medioambiental.

En cuanto a la tecnología de conversión que utilizará la planta de Fulcrum BioEnergy, cabe destacar el papel fundamental de los resultados obtenidos en el proyecto “Waste 2 Biofuels” desarrollado en Babilafuente (Salamanca, España), donde además de transformar la fracción orgánica en biocombustibles se realiza una separación y clasificación del resto de los componentes de las basuras (como los plásticos, hierros o aluminios), lo que facilita su aprovechamiento y reciclado. Estos resultados sentaron las bases que situaron a Abengoa en una posición privilegiada para encarar la tarea encomendada y han contribuido a su vez al diseño de un modelo preliminar que permita minimizar los riesgos que puedan surgir durante la construcción de la planta final.

Más información:

[1] https://www.energias-renovables.com/biocarburantes/abengoa-renace-entre-los-biocarburantes-con-un-20171109

[2] https://www.biobasedworldnews.com/abengoa-embarks-on-us-first-with-the-construction-of-bio-jet-fuel-plant-in-nevada

[3] http://www.abengoabioenergy.com/web/es/nuevas_tecnologias/tecnologias/planta_babilafuente/waste_to_biofuels/

Etiquetas:

Escuela del invierno del proyecto NESTER


Autor: Rocío Bayón, CIEMAT

Entre los días 6 y 16 de noviembre de 2017 tuvo lugar en la sede del Instituto de Chipre (Cyprus Institute, CyI) en Nicosia la segunda escuela de invierno organizada dentro del marco del proyecto europeo NESTER (Networking for Excellence in Solar Thermal Energy Research, G. A. Nº.692259.) [1].

El principal objetivo del proyecto NESTER [2] es mejorar el desempeño del Instituto de Chipre en términos de innovación científica en el campo de la energía solar térmica de concentración. Esta mejora se pretende alcanzar integrando las actividades de este instituto en una red de excelencia que proporcionará acceso a los conocimientos desarrollados en instalaciones más avanzadas, formando a su personal científico y técnico y ligándolo a la industria europea. La sustancial inversión tanto hecha como planificada por el CyI en términos de infraestructura y personal será más eficiente y competitiva pudiendo así alcanzar la excelencia internacional.

La localización geopolítica de Chipre ofrece excelentes oportunidades para desarrollar un nicho de investigación y desarrollo dentro de las tecnologías solares. Sin embargo, la lejanía con los correspondientes centros de excelencia europeos en este campo supone un gran impedimento. En este sentido la propuesta del NESTER pretende reforzar las ventajas y mejorar las desventajas de esta situación geográfica.

La red del proyecto NESTER incluye a cuatro instituciones que son líderes en campo de la investigación en energía solar como son CIEMAT, ENEA, PROMES/CNRS y RWTH – Aachen. Todas ellas poseen un elevado conocimiento en este campo además de operar algunas de las instalaciones más importantes del mundo. La mejora de las capacidades y el status del CyI resultante de este proyecto se traducirían positivamente en un desarrollo en la economía del conocimiento de Chipre. Así mismo, mejoraría la posición de Chipre como un importante actor en la investigación científica aplicada entre Europa y las regiones de Oriente Próximo y Norte de África.

La propuesta de actividades dentro del programa del proyecto NESTER comprende actividades de formación y transferencia de conocimiento, seminarios y eventos para establecer contactos entre socios europeos y del EMME, escuelas de verano e invierno así como eventos de carácter público. Todo diseñado para asegurar la sostenibilidad, la evolución y la continuidad de las actividades incluyendo la cooperación entre los socios más allá de la finalización del proyecto el cual tiene una duración de tres años.

La segunda escuela de invierno del proyecto NESTER sobre tecnologías de energía solar térmica de concentración ha estado dirigida tanto a investigadores en fase de iniciación como a investigadores con cierta experiencia que quieran desarrollar habilidades en una nueva área de investigación. En este sentido la escuela ha ofrecido una visión general de dichas tecnologías de concentración en la primera semana mientras que en la segunda semana se ha tratado una temática más específica, que en esta edición ha sido el almacenamiento térmico. Así pues durante la segunda semana se ha profundizado en los distintos tipos de almacenamiento térmico (sensible, latente y termoquímico) tanto desde el punto de vista de los materiales como los sistemas así como desde el punto de vista de la integración de los mismos en las centrales termosolares. En todos los casos se ha mostrado el estado actual de desarrollo e implantación comercial así como las tendencias en investigación de cara al futuro.

Para el desarrollo de todos los contenidos del curso se ha contado con la participación de investigadores expertos de los distintos centros de investigación europeos socios en este proyecto así como personal del CyI. Por parte del CIEMAT han asistido la Dr. Esther Rojas y la Dr. Rocío Bayón como ponentes expertas en almacenamiento térmico las cuales han impartido varias clases relacionadas con esta temática.

En cuanto al número de participantes, se ha contado con unos 20 alumnos procedentes en su mayoría de países del Mediterráneo (Egipto, Jordania, Marruecos, España, Grecia, Chipre) aunque también ha habido alumnos de países como Chile y Australia. Esto demuestra el gran interés que suscita este tipo de actividades de formación relacionadas con la energía solar de concentración no sólo en los países del Mediterráneo sino en el resto del mundo.

[1] http://nester.cyi.ac.cy/index.php/schools/2017-school

[2] http://nester.cyi.ac.cy/

Etiquetas:

Señales de alerta: las emisiones globales de CO2 se prevé que aumenten este año tras tres años estancadas

Las emisiones de CO2 provocadas por los combustibles fósiles y la industria suponen el 90% de las emisiones globales de CO2 asociadas a las actividades humanas. En los últimos tres años (2014-2016) el nivel global de emisiones de CO2 se mantuvo estable a pesar del aumento del crecimiento económico en esos años. Elementos positivos, como el menor uso del carbón en China, las mejoras en la eficiencia energética y el mayor uso de energías renovables como la solar o la eólica han contribuido a la estabilización en las emisiones de CO2. Sin embargo según un estudio publicado por investigadores del Global Carbon Project [1] se estima que las emisiones de CO2 vuelvan a aumentar en el año 2017 alrededor de un 2% respecto de los valores del año 2016 alcanzando un record de 36.8 Gt de CO2 emitidas a la atmósfera.

Autor: Rufino M. Navarro Yerga- Instituto de Catálisis y Petroleoquímica

La temperatura global de la tierra continúa en aumento. Los cinco años con mayor temperatura global se han alcanzado a partir de 2010 y 16 de los 17 años más calurosos se han registrado desde el año 2000. En este sentido es prioritario reducir las emisiones de gases de efecto invernadero asociadas a las actividades industriales y territoriales de los seres humanos. Mientras las temperaturas globales continúan en aumento, la estabilización de las emisiones de CO2 observada en los años 2014-2016 parece que llega a su fin ya que para el año 2017 se prevé que las emisiones vuelvan a aumentar (Figura 1). En el periodo 2014-2016 se observó un desacoplamiento entre la curva de crecimiento económico y el de emisiones de CO2 (Figura 1) producido por las mejoras en la eficiencia energética, el menor uso del carbón y el mayor uso de renovables. Sin embargo para el año 2017 las proyecciones para las emisiones de CO2 apuntan a un aumento del 2% respecto de las alcanzadas en 2016 con un valor record de emisiones de 36.8 Gt de CO2. Si a esa cifra se le suman el resto de emisiones de CO2 causadas por otras actividades humanas como la deforestación, 2017 se saldaría con un valor total de emisiones de 41 Gt de CO2.

 

 

Figura 1. Emisiones globales de CO2 a partir de combustibles fósiles e industria en el periodo 1990-2017 (los puntos rojos se corresponden a los datos para el año 2017) [1]

Los autores del trabajo indican que el aumento de las emisiones en 2017 está asociado a una mejora de la economía global que ha significado mayor producción de bienes que son los que acarrean más emisiones.  El mayor uso del carbón, petróleo y gas natural en China (un 3%. 5% y 12% respectivamente más que en 2016) junto con su menor generación hidroeléctrica es fundamental en el resultado global de emisiones en 2017 ya que este país es el responsable del 28 % de las emisiones globales de CO2. La reducción prevista para el año 2017 en las emisiones de CO2 en EEUU (-0.4%) y  en la Unión Europea (-0.2%) no son suficientes para compensar los aumentos producidos en China, India y el resto del mundo cuyas emisiones suman el 40% del global  y que se estiman que aumenten un 2.3%.

Con las previsiones de crecimiento económico para el año 2018 (2.9% según el Banco Mundial, el mayor crecimiento desde 2011) y con unas emisiones anuales globales de CO2  del orden de 41 Gt anuales,  el tiempo de respuesta para conseguir no alcanzar el límite de 2ºC de incremento de temperatura como recoge el acuerdo de Paris empieza a agotarse y es crítico. Los mismos autores plantean que lo fundamental es que las emisiones toquen techo cuanto antes y nada que no sea un descenso rápido y profundo de la decarbonización de la economía podría evitar alcanzar con el ritmo actual de emisiones superar el límite de calentamiento de 1.5ºC en un tiempo tan corto como una década y superar el calentamiento de 2ºC tan sólo unas pocas décadas después.

Más Información

[1] R-B. Jackson, C. Le Quere, R.M. Andrew, J.G. Canadell, G. P. Peters, J. Roy, L. Wu, “Warning sings for stabilizing global CO2 emissions” Environmental Research Letters, 12 (2017) 110202

Etiquetas: