‘Galaxias y Cosmología’

M51: una nueva mirada al Remolino

David Galadí, Centro Astronómico Hispano-Alemán.

La galaxia Remolino (M51) es un clásico, un objeto ineludible que se integra en la Galería Fotográfica Documental del Observatorio de  Calar Alto con esta fotografía impresionante obtenida con el reflector Zeiss de 1.23 m. La imagen muestra todos los rasgos que hacen de esta galaxia un motivo excepcional para ilustrar la naturaleza de las galaxias espirales, los procesos de formación estelar y la dinámica de los sistemas estelares en interacción…

M51, la galaxia del remolino

M51, la galaxia del remolino. CAHA/Fundación Descubre/DSA/OAUV - Vicent Peris (DSA/OAUV), Jack Harvey (DSA/SSRO), Steven Mazlin (DSA/SSRO), Carlos Sonnenstein y Juan Conejero.

El poeta español José Hierro, al presentar su libro Cuaderno de Nueva York afirmó que cualquier poeta relevante debe escribir sobre Nueva York y sobre la primavera al menos una vez en la vida. Lo mismo podría decirse de M51, la galaxia Remolino, en el contexto de la fotografía astronómica. Cualquier colección relevante de astrofotografías tiene que incluir este objeto por lo menos una vez, si no en más ocasiones, y cada nueva mirada a este astro revela aspectos nuevos de esta galaxia de estructura espiral tan marcada.

La galaxia espiral M51 la descubrió Charles Messier en 1773, pero la primera persona que se percató de su llamativa estructura espiral fue William Parsons (conde de Rosse) en 1845, gracias a su enorme telescopio reflector, el Leviatán de Parsonstown. Para percibir sus formas intrincadas se requiere un telescopio grande, pero incluso los instrumentos pequeños para aficionado revelan que esta galaxia no se encuentra sola, sino que tiene una pequeña compañera, la galaxia irregular enana NGC 5195.

En la actualidad está claro que estos dos sistemas estelares se hallan en proceso de collision, y que la marcada forma espiral de M51 se debe, sobre todo, a las fuerzas de marea desencadenadas por este choque. Desde la Tierra, por puro azar, vemos el disco de M51 de frente, lo que permite estudiarlo con detalle. A una distancia de 23 millones de años-luz, las dimensiones aparente de M51 implican que esa galaxia tiene que ser bastante parecida a la nuestra, aunque algo menor.

M51 y su compañera ejecutan una danza cósmica que en los últimos 500 millones de años ha hecho que NGC 5195 atraviese dos veces el disco de M51. La galaxia pequeña se encuentra ahora algo por detrás del disco del Remolino y se está alejando de nosotros.

La interacción de ambas galaxias induce toda una serie de efectos colaterales, uno de los cuales lo representa la estructura espiral de la galaxia principal. Cuando chocan dos galaxias, las estrellas que las conforman las galaxias no colisionan entre sí, sino que sufren alteraciones muy fuertes en sus trayectorias, hasta el punto de ser muy habitual que muchas estrellas terminen expulsadas al espacio intergaláctico. Este es el destino de muchas estrellas de la galaxia secundaria: corrientes de estrellas arrancadas de NGC 5195 se extienden por la parte izquierda (norte) de la imagen a modo de neblina difusa. Muchos de los mundos que hay en esa zona están condenados a perderse en el vacío del espacio, a medida que se alejen de sus galaxias madre.

El contenido gaseoso de las galaxias que colisionan se comprime, y este hecho desencadena episodios violentos de formación estelar eruptiva (Starbursts). Las regiones de formación estelar se detectan gracias al brillo rosado del hidrógeno ionizado. Las imágenes obtenidas en el color llamado H-alfa revelan las zonas donde las estrellas recién nacidas ionizan el gas. Por este motivo ofrecemos dos versiones de la imagen de M51: una en color verdadero y otra con la luz H-alfa realzada.

La imagen en color verdadero se obtuvo captando luz a través de un conjunto de tres filtros que reproducen la sensibilidad cromática del ojo humano. El balance cromático final se aplicó considerando como blanco el tono correspondiente a la suma de toda la luz procedente de las dos galaxias. De este modo se hace manifiesto el contraste entre las distintas poblaciones estelares que hay en el campo de visión. En particular, la galaxia espiral exhibe tonos azulados que se deben a las estrellas masivas, jóvenes y calientes que pueblan su disco. Este color contrasta con los matices amarillentos de la galaxia satélite, que proceden de estrellas más ligeras, viejas y frías.

M51 experimenta una actividad de formación estelar mucho más potente que las galaxias aisladas como la nuestra. Esta circunstancia salta a la vista en la imagen en la que se ha realzado la luz H-alfa. Como cabía esperar, la actividad de formación estelar se concentra en las áreas donde se aprecian más estrellas jóvenes y masivas: los brazos espirales azulados. Pero las emisiones de luz H-alfa en M51 no se restringen a los brazos espirales, sino que se extienden por otras zonas. Uno de los rasgos más llamativos e intrigantes de esta imagen corresponde a la región difusa con emisión H-alfa débil al norte (izquierda) de NGC 5195, un detalle que no se había apreciado antes y que está relacionado, también, con los efectos de la colisión sobre el contenido gaseoso de las galaxias.

Muchos de los puntos que se ven en la imagen son estrellas de nuestra propia Galaxia. Pero la inspección atenta de la foto revela que la mayoría de las manchas pequeñas corresponden a galaxias de fondo. La imagen muestra sistemas extragalácticos pequeños y distantes, de todas las formas y colores, hasta el filo del infinito. Las dos galaxias de fondo más notables son la expiral vista de canto IC 4277, que aparece cerca de la esquina inferior izquierda (nordeste) de la toma, y la pequeña galaxia irregular IC 4278, a la derecha de la anterior, por debajo (este) del puente de estrellas que parece unir M51 a NGC 5195.

Esta imagen se obtuvo con el telescopio reflector Zeiss de 1.23 m del Observatorio de Calar Alto como parte del Proyecto de Divulgación que dirige la Fundación Descubre con este instrumento. Las observaciones las planeó y ejecutó la Escuela Documentalista de Astrofotografía, la misma entidad que luego procesó los datos con la colaboración del Observatorio Astronómico de la Universidad de Valencia con el paquete informático PixInsight.

ENLACES:

Etiquetas:

DESPLAZAMIENTO AL ROJO

Las ondas electromagnéticas, como por ejemplo la luz, se caracterizan por su longitud de onda, es decir, por la distancia que media entre dos crestas ondulatorias consecutivas. Una onda cualquiera, sea o no electromagnética, puede emitirse con una longitud de onda determinada pero luego se puede ver afectada por multitud de procesos que hagan que el receptor la capte con una longitud de onda distinta.

En el caso del sonido, cuando cambia la longitud de onda se altera el tono (carácter agudo o grave) percibido. En el caso de la luz, los cambios de longitud de onda conllevan modificaciones en el color.
El desplazamiento al rojo no es más que un cambio en la longitud de onda de la radiación electromagnética. Una onda electromagnética emitida con una cierta longitud de onda (un color determinado) se capta con una longitud de onda (color) distinta. Cuando esta alteración implica un enrojecimiento del tono de la luz o, en general, un alargamiento de la longitud de onda, se habla de desplazamiento hacia el rojo. Aunque el desplazamiento hacia el rojo sea el más popular, hay que insistir en que también es posible que se produzca un acortamiento de las longitudes de onda de la radiación: en este caso se habla de desplazamiento al azul.

En el caso de la radiación electromagnética en general, y muy en particular si se trata de la luz, este cambio de longitud de onda se puede deber a tres procesos físicos diferentes: a que el emisor y el receptor se alejen entre sí (efecto Doppler), a que el emisor se encuentre sometido a un campo gravitatorio más intenso que el receptor (desplazamiento al rojo gravitatorio) o a la expansión del universo (desplazamiento al rojo cosmológico). Cuando emisor y receptor se acercan, cuando el receptor experimenta un campo gravitatorio más intenso o cuando el universo se contrae, entonces se produce el efecto contrario, el desplazamiento al azul. El desplazamiento al rojo se representa con la letra z. La variable z adopta valores positivos cuando se trata de un desplazamiento al rojo y negativos si se trata de un desplazamiento al azul.

Como se ha indicado, el desplazamiento al rojo (o al azul) puede tener tres causas físicas bien diferenciadas. Pero hay una de ellas que destaca por su importancia y por la frecuencia con la que aparece en contextos físicos, y sobre todo en problemas astronómicos: el efecto Doppler.
Se conoce como efecto Doppler el cambio en la longitud de una onda como consecuencia del movimiento del emisor respecto del receptor. Observamos este efecto numerosas veces en la vida diaria. Cuando un coche se nos acerca a gran velocidad, percibimos que el sonido del motor (una onda, al fin y al cabo) es más agudo que cuando se aleja de nosotros. Esta percepción se debe al hecho de que cuando el coche se acerca, las ondas sonoras emitidas parecen juntarse y disminuye su longitud, mientras que se produce el efecto contrario cuando el coche se aleja, situación en que las ondas parecen separarse, lo que hace que su longitud aumente.

Este efecto es muy importante en astrofísica, donde adquiere relevancia aplicado a las ondas electromagnéticas, sobre todo al caso de la luz. Cuando un objeto que emite luz, como una estrella o una galaxia, se acerca a nosotros (o nosotros al objeto), vemos sus ondas de luz comprimidas, con menor longitud de onda que la correspondiente a la emisión: el color se desplaza hacia el azul. Si el cuerpo emisor se aleja de nosotros (o nosotros del cuerpo emisor), entonces vemos que su luz se desplaza al rojo, sus ondas se alargan. El efecto se torna más intenso cuanto mayor sea la velocidad relativa entre el emisor y el receptor, lo cual permite usar el efecto Doppler para calcular la velocidad de los astros respecto de nosotros.

Este efecto recibe su nombre del físico austríaco Christian Doppler, y fue clave en el descubrimiento de la expansión del universo por Edwin Hubble. No obstante, hay que aclarar que los desplazamientos al rojo de los que tanto se trata en cosmología no se deben al efecto Doppler, sino a un efecto independiente, el del desplazamiento al rojo cosmológico, relacionado con la expansión del universo, y no con el desplazamiento de las galaxias propiamente dichas en el seno del espacio.



Glosario: “100 conceptos básicos de Astronomía”

Etiquetas:

EXPANSIÓN DEL UNIVERSO

Se ha observado que las distancias entre las grandes estructuras del universo (los cúmulos y supercúmulos de galaxias) se incrementan de manera progresiva. Este hecho observacional se denomina expansión del universo y fue descubierto por Edwin Powell Hubble y Milton Lasell Humason en 1929. Si se toman dos cúmulos de galaxias cualesquiera, la distancia entre ellos crece sin cesar, y lo hace no porque las galaxias o los cúmulos se desplacen, sino porque crece el espacio que media entre ellos. Es más, cuanto más distantes entre sí se encuentren los cúmulos considerados, más veloz es el incremento de la distancia. La intensidad de la expansión del universo en cualquier instante de su historia se valora por medio del parámetro de Hubble, H. El valor actual del parámetro de Hubble recibe el nombre de constante de Hubble y se simboliza como H0. La expansión del universo no afecta a sistemas ligados gravitatoriamente, es decir, el proceso no altera las distancias entre los átomos de nuestros cuerpos, entre la Tierra y el Sol o incluso entre las estrellas de la Galaxia o entre galaxias pertenecientes a un mismo cúmulo. Las observaciones indican que la expansión del universo se está acelerando cada vez más, por motivos que aún no están claros.



Glosario: “100 conceptos básicos de Astronomía”

Etiquetas:

GALAXIA, LA

La Galaxia, con mayúscula, es el nombre propio del gran sistema estelar o universo isla en el que habitamos. Nuestra Galaxia consiste en un gran conjunto de estrellas y materia interestelar con forma espiral. Consta de un núcleo central, un bulbo esferoidal que rodea el núcleo y un disco mucho mayor (unos 100 000 años-luz de diámetro) en el que las estrellas más brillantes trazan brazos espirales. El conjunto está rodeado por un halo de estrellas antiguas y cúmulos globulares. Se trata, por tanto, de un sistema espiral semejante a otras galaxias. Estudios recientes apuntan a la posibilidad de que la Galaxia sea del tipo de las espirales barradas. El Sol se halla en el disco de la Galaxia a unos 30 000 años-luz del centro. Cuando contemplamos la Galaxia desde su interior, se nos muestra como una banda luminosa lechosa que cruza todo el firmamento: la Vía Láctea. Por eso a veces la Galaxia recibe el nombre de galaxia de la Vía Láctea.

galaxia_la

Nuestra Galaxia vista desde el lugar que ocupa la Tierra en su interior nos ofrece el panorama de la Vía Láctea. Mosaico de siete fotografías de la Vía Láctea tomadas desde Orea (Guadalajara). Se aprecia a la derecha la región de Sagitario, donde la banda lechosa de la Vía Láctea adquiere más brillo por coincidir con la dirección hacia el centro de nuestra Galaxia. Créditos: Enrique Herrero Casas (Universidad de Barcelona).

Las galaxias suelen agregarse en agrupaciones de diversos tamaños. Las menores agrupaciones de galaxias contienen varias decenas de ellas, con masas totales que alcanzan el billón de veces la de nuestro Sol: se trata de los grupos de galaxias. Los tamaños característicos de los grupos rondan el megapársec (3 millones de años-luz). El ejemplo más cercano lo ofrece el Grupo Local, al que pertenece nuestra Galaxia, y que consta de una treintena de miembros.



Glosario: “100 conceptos básicos de Astronomía”

Etiquetas:

GALAXIA ACTIVA

Nuestra Galaxia es una espiral tranquila, quizá del tipo barrado. Pero en el universo hay otras muchas galaxias de tipos muy diferentes, y entre ellas se encuentra el grupo de las galaxias activas. Las galaxias activas contienen un núcleo que emite energía en cantidades enormes y de manera muy violenta. Como es natural, esos núcleos reciben el nombre de núcleos activos de galaxias o, también, núcleos de galaxias activas (o AGN, siglas de la denominación en inglés, active galactic nucleus). Las teorías más aceptadas atribuyen la emisión de energía a un agujero negro supermasivo situado en el centro de estas galaxias, sobre el cual se precipita materia a un ritmo considerable. La caída del material induce su calentamiento (más de un millón de grados) y compresión, y desencadena la emisión de energía en todas las longitudes de onda del espectro. Con frecuencia los núcleos activos de galaxias emiten también chorros de materia en direcciones opuestas, unos flujos de partículas que recorren distancias cosmológicas en el espacio intergaláctico y dan lugar a fenómenos de emisión radioeléctrica. Los núcleos activos de galaxias pueden manifestarse de varias maneras distintas desde el punto de vista observacional, dependiendo de sus características intrínsecas y del ángulo bajo el cual se observan desde la Tierra. Tenemos así los cuásares (con o sin emisión de ondas de radio), los blázares, las radiogalaxias, las galaxias de Seyfert, etc.

galaxia_activa

La galaxia M74, en la constelación de Piscis,a unos 30 millones de años-luz de distancia,es una galaxia espiral moderadamente activa,clasificada como de tipo Seyfert 2. Créditos: Observatorio de Calar Alto, Proyecto ALHAMBRA (Instituto de Astrofísica de Andalucía), Vicent Peris (Observatorio Astronómico de la Universidad de Valencia).



Glosario: “100 conceptos básicos de Astronomía”

Etiquetas:

GALAXIA

Una galaxia es una gran aglomeración de estrellas, gas y polvo que se mantiene unida por el efecto de su propia gravitación. Las galaxias más pequeñas contienen unos millones de estrellas, mientras que las mayores poseen billones (millones de millones). Hay galaxias de diversos tipos: elípticas, espirales e irregulares. El Sistema Solar pertenece a una galaxia espiral. Esta categoría se caracteriza por poseer un disco aplanado de estrellas, gas y polvo, con brazos espirales en su seno. Las galaxias elípticas tienen estructura esferoidal o elipsoidal y suelen contener solo estrellas, con poco gas y poco polvo.

galaxia

En primer plano, la galaxia espiral NGC 7331, en la constelación de Pegaso a una distancia de 50 millones de añosluz. Se trata de una espiral semejante a nuestra propia Galaxia. En el fondo se distingue una agrupación visual de varias galaxias unas diez veces más lejanas, de diversos tipos y colores. Créditos: Observatorio de Calar Alto, Vicent Peris (Observatorio Astronómico de la Universidad de Valencia) y Gilles Bergond (Observatorio de Calar Alto).



Glosario: “100 conceptos básicos de Astronomía”

Etiquetas:

ENERGÍA OSCURA

Cuando Albert Einstein elaboró su modelo de universo, en 1915, Edwin Hubble aún no había realizado las observaciones que demostraban que el cosmos estaba en expansión. Einstein creía que el universo era estático, de modo que introdujo en sus ecuaciones de la relatividad general un término de expansión, llamado constante cosmológica, cuyo efecto era compensar la acción de la gravitación causada por toda la masa del universo.

Años después, cuando Hubble probó que el universo estaba expandiéndose, Einstein consideró la constante cosmológica como una de sus mayores equivocaciones. En 1998, los cosmólogos, utilizando el brillo de supernovas que explotaron hace cientos de millones de años en galaxias muy distantes, pudieron demostrar que la expansión del universo se está acelerando: el cosmos parece estar dominado por un tipo de energía de origen desconocido, la llamada energía oscura, cuyo efecto es equivalente al de una antigravedad que existe a escalas mucho mayores, un tipo de efecto análogo al de la constante cosmológica introducida por Einstein.

Observaciones recientes sugieren que cerca del 95% de la energía del universo está en el sector «oscuro». Este sector está constituido por materia oscura (una forma de materia no luminosa) y energía oscura, cuyo origen y composición son desconocidos. La energía oscura constituye alrededor del 73% del universo y es responsable de una misteriosa fuerza repulsiva que parece estar acelerando la expansión del cosmos.



Glosario: 100 conceptos básicos de Astronomía”

Etiquetas:

CÚMULO DE GALAXIAS

Agrupación de galaxias de entre 50 y 100 miembros, con concentraciones de gas caliente y materia oscura. Estas galaxias se mantienen unidas entre sí gracias a la interacción gravitatoria, y los cúmulos presentan masas cercanas a 10 billones de veces la del Sol. Los cúmulos de galaxias miden normalmente decenas de megapársecs (decenas de millones de años-luz). La formación de estas agrupaciones se suele situar en periodos entre hace diez mil millones de años y la actualidad. Algunos ejemplos de estas aglomeraciones de galaxias son el cúmulo de Virgo, el de Hércules y el de la Cabellera de Berenice. Existen otras agrupaciones mayores, llamadas supercúmulos de galaxias y otras menores, llamadas grupos de galaxias. Grupo de galaxias es una concentración de varias decenas de galaxias, con masas totales que alcanzan el billón de veces la de nuestro Sol. Los tamaños característicos de los grupos rondan el megapársec (3 millones de años-luz). El ejemplo más cercano lo ofrece el Grupo Local, al que pertenece nuestra Galaxia. Los supercúmulos de galaxias son grandes estructuras formadas por la interacción gravitatoria de cúmulos y grupos de galaxias, con tamaños entre los 100 y los 500 megapársecs (300 y 1500 millones de años-luz). Los súper cúmulos de galaxias constituyen las mayores estructuras jerárquicas en el cosmos. Por encima de estas entidades, el universo adquiere una textura homogénea a gran escala.

Cúmulo de galaxias

Quinteto de Stephan (HGC 92), grupo compacto de galaxias a unos 300 millones de años-luz. Imagen tomada con el telescopio IAC80 del Observatorio del Teide (Tenerife). Créditos: IAC, Ángel R. López Sánchez.



Glosario: 100 conceptos básicos de Astronomía”

Etiquetas:

EL UNIVERSO AL DESCUBIERTO: CONCEPTOS BÁSICOS DE COSMOLOGÍA

Hector Otí Floranes
LAEX-CAB

Hace unos meses, di con un artículo de divulgación que, al fin, aclaraba de una forma sencilla y llana un tema controvertido y complicado: Cosmología. Ésta es una rama de la Astronomía que estudia la evolución del universo como un todo y tiene como pilar fundamental la Teoría de la Relatividad de Einstein. Muchas ideas y comentarios, incluso de astrónomos, acerca de puntos clave de la Cosmología son oscuros, cuando no falsos. Por ello, Charles Lineweaver y Tamara M. Davis, a la sazón miembros del Mount Stromlo Observatory (Australia), elaboraron en 2005 este artículo de divulgación (“Cosmology misconceptions about the big bang”) que trata de verter luz sobre las consecuencias que el actual Modelo Cosmológico acarrea. No es fácil dar con un texto tan claro y directo, por eso hemos decidido compartirlo con vosotros. He aquí un resumen del mismo:

(más…)

Etiquetas:

Ciencia y Ciudadanos

David ByN

¿Es posible que una persona sin los largos años de entrenamiento específico pueda contribuir a hacer ciencia de calidad, puntera? La respuesta es sí, y existen numerosos ejemplos. Parafraseando a Emiliano Zapata, “la ciencia para quien la trabaja”.

(más…)

Etiquetas: