‘General’

ASTEP: Application of Solar Thermal Energy to Processes

Autores: Montes, M. J.*; Abbas, R.**; Barbero, R.*; Rovira, A.*

*Dpmto. Ingeniería Energética, Universidad Nacional de Educación a Distancia (UNED)

**Dpmto. Ingeniería Energética, Universidad Politécnica de Madrid (UPM)

Resumen

El Proyecto Europeo ASTEP (Application of Solar Thermal Energy to Processes), en el que participan dos universidades del consorcio ACES 2030 (Universidad Nacional de Educación a Distancia, UNED, y Universidad Politécnica de Madrid, UPM) se acaba de poner en marcha [1]. Este proyecto tiene el objetivo específico de generar energía solar de alta calidad y fiabilidad para procesos industriales, tanto para demanda de calor como de frío, en operación continua. Para conseguir este objetivo, en el proyecto se propone un diseño de colector tipo Fresnel rotatorio, llamado SunDial. Este sistema se caracteriza por ser modular y de fácil instalación, lo que permite reducir costes. Además, permite trabajar con uno o dos ejes de seguimiento, lo cual es una ventaja si se quiere instalar en ubicaciones de mayor latitud. La operación y el mantenimiento son también sencillos, así como la integración dentro de procesos industriales ya existentes.

Abstract

The European Project ASTEP (Application of Solar Thermal Energy to Processes), in which the Universidad Nacional de Educación a Distancia (UNED) and the Universidad Politécnica de Madrid (UPM) participate (both also in ACES 2030), has just been launched [1]. This project has the specific challange of generating high quality and reliable solar energy for industrial processes, for both heat and cold demand, in continuous operation. To achieve this objective, the project proposes a rotary Fresnel type collector design, called SunDial. This system is characterized by being modular and easy to install, which reduces costs. In addition, it allows working with one or two tracking axes, this last option for higher latitude locations. Operation and maintenance are also simple, as well as integration into existing industrial processes.

Artículo

El calor solar para procesos industriales (SHIP; Solar Heat for Industrial Processes) está adquiriendo cada vez más importancia perfilándose como una forma de acoplar la energía solar a la alta demanda térmica que existe en la industria. Esto trae consigo un doble beneficio: al usar una fuente de energía renovable, el consumo de combustible fósil se reduce y, por tanto, también la emisión de gases contaminantes a la atmósfera; en segundo lugar, la demanda térmica en los procesos industriales puede convertirse en un nicho de mercado importante para la tecnología solar, lo cual repercute en una disminución del coste a través de las economías de escala.

De acuerdo con un estudio reciente [2] del Laboratorio Nacional de Energías Renovables (NREL; National Renewable Energy Laboratory) de Estados Unidos, la Unión Europea ha sido en la última década líder en el desarrollo de instalaciones de calor solar para procesos industriales. Sin embargo, hasta la fecha, prácticamente todas las demandas térmicas de calor solar han sido por debajo de 150 ºC. Se hace necesario, por tanto, que existan tecnologías capaces de suministrar calor a procesos industriales por encima de ese umbral de 150 ºC.

Actualmente hay 111 plantas SHIP operando en Europa, de acuerdo con la base de datos del IEA, task 49 [3-4], de las cuales sólo 17 trabajando por encima de 150ºC, y sólo en 6 países europeos. Es importante hacer notar que no todos los colectores son válidos para la temperatura objetivo que se propone en este proyecto. Para obtener temperaturas por encima de 150ºC, los colectores más adecuados son los colectores Fresnel o cilindro-parabólicos, tal y como se muestra en la siguiente figura 1.

Figura 1. Marco de trabajo del proyecto ASTEP

Como se puede ver en dicha figura 1, el colector Fresnel SunDial se ha aplicado a dos procesos industriales distintos, uno dentro del consorcio SPIRE (Sustainable Process Industry through Resource and Energy Efficiency), y otro no:

  • Proceso de precalentamiento, por encima de 220 ºC, en una industria de procesado de metal, en Rumanía (47.1 N)
  • Proceso de pasteurización, a 175ºC, en una industria láctea, ubicada en Grecia (37.93 N)

Los colectores solares para proporcionar calor a procesos industriales deben ser más sencillos que los que se emplean para producción de energía eléctrica, ya que se busca fundamentalmente abaratar costes. En el proyecto ASTEP se propone el colector solar SunDial, de instalación sencilla, y con unos requerimientos de operación y mantenimiento también limitados, lo que permite reducir costes. El SunDial es el resultado de 4 patentes españolas: ES2578804B2, ES1138715U, ES2537607B2 y ES2713799A1, y de 2 patentes internacionales: WO/2016/166388A1 and WO/2016/166390A1, que pertenecen a la UPM y a la UNED.

El SunDial es un colector Fresnel rotatorio que consiste en una plataforma horizontal, que rota alrededor de un eje vertical. Los espejos concentradores primarios se encuentran instalados sobre la plataforma rotatoria, tienen sección circular y son paralelos al receptor, paralelo a su vez al diámetro de la plataforma, tal y como se observa en la figura 2.

Figura 2. Concentrador Fresnel Rotatorio SunDial

Dentro del concepto de Fresnel rotatorio SunDial, podemos distinguir dos diseños diferentes:

En el primer diseño, el Sol se mantiene siempre en el plano de simetría del concentrador, para lo cual, el SunDial tiene un seguimiento azimutal diario; de esta manera, los espejos están fijos a la estructura. Este hecho, junto con la pequeña curvatura de los espejos permite un montaje sencillo que abarata costes, consiguiendo un dispositivo con una alta precisión de enfoque.

En el segundo diseño, los espejos no son fijos, sino que rotan alrededor de su eje longitudinal. De esta manera, el SunDial está dotado de un sistema de seguimiento en dos ejes: seguimiento azimutal mediante la plataforma rotatoria y seguimiento en elevación mediante el ángulo de inclinación de los espejos que rotan siguiendo la altura solar. Este sistema de seguimiento adicional introduce un mayor coste que la anterior, pero conduce a un alto rendimiento óptico que permite utilizar el SunDial en latitudes en las tecnologías Fresnel convencionales tendrían un rendimiento muy limitado.

Acknowledgements

The ASTEP project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 884411. Disclosure: The present publication reflects only the author’s views and the EU are not liable for any use that may be made of the information contained therein.

Referencias

[1] Horizon H2029 ASTEP Project: https://cordis.europa.eu/project/id/884411

[2] https://www.nrel.gov/docs/fy16osti/64709.pdf

[3] http://ship-plants.info/

[4] http://task49.iea-shc.org/data/sites/1/publications/Task%2049%20Deliverable%20A1.3_20160504.pdf

Contacto

María José Montes, Investigadora principal grupo UNED-STEM en ACES2030-CM – mjmontes@ind.uned.es

Antonio Rovira, Catedrático. Coordinador ASTEP  – rovira@ind.uned.es

Coordina ACES2030-CM: Manuel Romero Álvarez. IMDEA Energía

Etiquetas:
Categorias: General

Desarrollo de una nueva metodología para detectar deformaciones inducidas por gravedad en heliostatos

Autor: Alejandro Martínez, IMDEA Energía

Los heliostatos son los concentradores solares que se emplean en las centrales solares de torre central. Se componen de uno o varios espejos, denominados facetas, anclados a una estructura que sigue al sol mediante un sistema de seguimiento de doble eje. Su objetivo es reflejar la radiación solar y dirigirla al receptor, situado en la parte más alta de la torre, para generar calor y producir, por ejemplo, electricidad. Uno de los principales problemas de este tipo de concentradores es que debido a su gran peso y tamaño (~ 100 m2), su estructura está sujeta a posibles deformaciones por efecto de la gravedad. Estas deformaciones influyen negativamente en la eficiencia óptica del concentrador, por lo que su conocimiento y estudio resulta de gran interés para poder minimizar sus efectos adversos. En la Unidad de Procesos de Alta Temperatura (UPAT) del Instituto IMDEA Energía han desarrollado una nueva metodología que permite detectar este tipo de deformaciones. Tradicionalmente, el efecto de cargas estáticas, como la gravedad, en la estructura de los heliostatos, se estudia mediante modelos basados en el análisis de elementos finitos. Esta nueva metodología, por el contrario, se basa en el análisis de los mapas de flujo producidos por la radiación reflejada por el heliostato al impactar sobre un blanco.

La metodología desarrollada por la UPAT se basa en adquirir varios mapas de flujo a distintas horas del día, es decir, para diferentes posiciones y por lo tanto para diferentes repartos de la carga gravitatoria sobre la estructura del heliostato, y después compararlos con sus correspondientes mapas de flujo numéricos. Para simular éstos últimos debe conocerse la forma exacta de la superficie del heliostato para una posición en concreto, por lo que previamente debe haberse empleado alguna técnica de caracterización óptica como, por ejemplo, la deflectometria. La comparación entre los mapas de flujo numérico y experimental se lleva a cabo mediante el coeficiente de correlación de Pearson. En el caso de que la estructura del heliostato sea lo suficientemente rígida, las deformaciones serán despreciables, por lo que la correlación entre los mapas de flujo numérico y experimental no dependerá de la hora del día. Por el contrario, si las deformaciones son notables, la correlación entre ambos mapas será máxima para el mapa de flujo experimental adquirido en la posición más próxima a aquella en la que se caracterizó la superficie del heliostato.

Figura 1: (a) Campo de heliostatos ubicado en instituto IMDEA Energía. (b) Superposición de los mapas de flujo numérico y experimental de un heliostato de la instalación para su posterior comparación.

Esta novedosa metodología, a pesar de no ofrecer información sobre el tipo de deformaciones inducidas en la estructura, permite determinar fácilmente la existencia o no de éstas. Además, proporciona información de manera directa sobre el impacto de las mismas en la eficiencia óptica del concentrador, permitiendo predecir si existirán, por ejemplo, pérdidas por desbordamiento. Esta metodología ha sido aplicada en el campo solar ubicado en el instituto IMDEA Energía, concluyendo que sus heliostatos no adolecen de deformaciones apreciables, posiblemente debido a su pequeño tamaño, de tan solo 3 m2.

Referencias

Martínez-Hernández, A., Gonzalo, I. B., Romero, M. & González-Aguilar, J. (2020) Determination of Gravity-Induced Deformations of Heliostat Structures through Flux Maps Analyses. In Proceedings ISES Solar World Congress 2019, under review.

Contacto

José González Aguilar, Responsable del grupo IMDEAE-UPAT en ACES2030-CM - jose.gonzalez@imdea.org

Coordina ACES2030-CM: Manuel Romero Álvarez. IMDEA Energía

Etiquetas:
Categorias: General

¿Viene la vida del espacio? Fotoquímica en el medio interestelar

Autor: Gonzalo Santoro, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

El medio interestelar es un lugar frío, inhóspito y eminentemente vacío. Parece difícil imaginar, por tanto, que estas regiones del espacio presenten una química rica y compleja. Sin embargo, es posible que en las denominadas nubes moleculares densas se hayan formado moléculas esenciales para la vida tales como los aminoácidos. De hecho, el aminoácido más simple, la glicina, se detectó por primera vez en el medio interestelar hace casi veinte años [1], aunque sigue siendo el único que se ha detectado en el espacio.

El medio interestelar está constituido por la materia – fundamentalmente hidrógeno y helio – y la radiación que existe entre las estrellas. Es éste un medio extremadamente diluido con densidades medias de 1 partícula por cm3, llegándose en determinadas regiones a presiones de tan sólo 10-4 partículas por cm3. De entre los distintos entornos del medio interestelar, las nubes moleculares densas ­– masas de gas y polvo a temperaturas de entre 10 K y 20 K­ – son las regiones de mayor densidad con un número de moléculas por cm3 de entre 102 y 106, un número que continúa siendo minúsculo si lo comparamos con la densidad de moléculas de la atmósfera terrestre, que es de 1019 moléculas por cm3.

En estas condiciones, las moléculas en fase gas condensan sobre la superficie del polvo disperso en las nubes moleculares, de manera que los granos de polvo se encuentran recubiertos de hielo. Así, los granos de polvo interestelar actúan como puntos de nucleación del hielo interestelar de manera que localmente se alcanza una concentración de moléculas suficiente como para que interaccionen.

Estos hielos están compuestos mayoritariamente por agua, dióxido y monóxido de carbono y metanol, junto con metano, amoníaco, formaldehído y ácido fórmico en menores cantidades. Todas estas moléculas, se formaron directamente en fase gas en las etapas más tardías de la vida de las estrellas y fueron expulsadas al medio interestelar junto con el polvo cósmico, que también se formó principalmente en estrellas moribundas, y que se compone en su mayor parte de carbono hidrogenado, carburo de silicio y silicatos.

No obstante, a pesar de que localmente la concentración de moléculas en los hielos interestelares es muy superior a la que presenta la materia gaseosa de las nubes moleculares, la energía térmica no es suficiente para promover reacciones químicas y es aquí donde la fotoquímica entra en juego.

Como se ha comentado previamente, el medio interestelar no es sólo materia sino también radiación y las nubes moleculares están sometidas a una intensa radiación cósmica (rayos gamma) y a radiación ultravioleta. Estas radiaciones son lo suficientemente energéticas como para iniciar y sostener reacciones químicas en los hielos de las nubes moleculares densas.

Hace casi dos décadas – y sólo un año antes de que la glicina se detectara en el espacio – se demostró en el laboratorio la síntesis de aminoácidos a partir de la irradiación ultravioleta de mezclas de hielos análogas a las del medio interestelar [2]. De hecho, esos experimentos observaron no sólo la síntesis de glicina, sino también de aminoácidos más complejos como la serina o el ácido aspártico. Más recientemente, se ha observado en el laboratorio que la fotoquímica de hielos análogos a los del medio interestelar puede dar lugar a la síntesis de azúcares, incluida la ribosa, una de las unidades moleculares del ARN [3]. Así, la simulación en el laboratorio de las condiciones y procesos del medio interestelar constituye una herramienta fundamental para la astroquímica y, además, ayuda enormemente a los astrónomos a centrar sus observaciones del espacio.

Los pilares de la creación (izquierda) es una de las fotografías más icónicas del telescopio espacial Hubble. Estas masas de gas y polvo (nubes moleculares) se encuentran en la nebulosa del Águila a unos 6500 años luz de la Tierra. Para simular estos entornos espaciales, en el grupo ESISNA, hemos diseñado y construido una máquina de ultra alto vacío (derecha) que nos permite investigar mecanismos plausibles para la formación de moléculas biológicas en el espacio.

En el grupo ESISNA del ICMM, dentro del proyecto europeo Nanocosmos, hemos diseñado y construido una máquina para estudiar en el laboratorio la formación de polvo cósmico en estrellas evolucionadas, es decir, en las últimas etapas de su vida, así como los procesos que experimenta el polvo cósmico en el espacio [4, 5]. Esta máquina – denominada Stardust por razones obvias –  tiene un módulo específico para simular la formación y el procesado de hielos de interés astrofísico, permitiendo investigar, entre otras cosas, la fotoquímica de hielos en las condiciones que se dan en las nubes moleculares densas.

Con este módulo estamos investigando actualmente la incorporación de oxígeno y nitrógeno a hidrocarburos alifáticos – empezando por los más sencillos, es decir, los alcanos – mediante irradiación ultravioleta en mezclas de hielos análogas a las que podrían encontrarse en las nubes moleculares. Muy recientemente, la misión Rosetta ha confirmado la presencia de hidrocarburos alifáticos en cometas, incluyendo alcanos lineales hasta el heptano [6, 7]. La composición molecular de lo volátiles en los cometas es extremadamente similar a la de las nubes moleculares y, por tanto, a pesar de que aún no se hayan detectado alcanos en el medio interestelar, es muy probable que existan. De hecho, simulando en nuestro laboratorio la formación de polvo cósmico en estrellas evolucionadas ricas en carbono, que son las que sintetizan hidrocarburos, ­hemos demostrado que estas estrellas generan predominantemente material alifático [4], que posteriormente es expulsado al medio interestelar y se dispersa por el espacio. Por desgracia, la detección de alcanos en el medio interestelar no es trivial, ni mucho menos; en el caso de los cometas ha habido que esperar hasta que una misión espacial, la misión Rosetta, orbitara un cometa y una de sus sondas se posase sobre su superficie.

Los procesos que estamos investigando actualmente en nuestro laboratorio permiten explorar la síntesis de aminoácidos alifáticos a partir de hielos de alcanos y validar mecanismos plausibles para la formación en el espacio de moléculas biológicas prebióticas, contribuyendo de esta forma a aumentar nuestro conocimiento sobre cómo pudo empezar la vida en la Tierra. Quizá no seamos sólo polvo de estrellas sino también hielo interestelar.

Referencias

[1] Kuan, Charnley, Huang et al. Interstellar Glycine, The Astrophysical Journal 593, 848 (2003).

[2] Muñoz-Caro, Meierhenrich, Schutte et al. Amino acids from ultraviolet irradiation of interstellar ice analogues, Nature 416, 403 (2002).

[3] Meinert, Myrgorodska, Marcellus et al. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs, Science 352, 208 (2016).

[4] Martínez, Santoro, Merino et al. Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes, Nature Astronomy 4, 97 (2020).

[5] Santoro, Martínez, Lauwaet et al. The chemistry of cosmic dust analogues from C, C2, and C2H2 in C-rich circumstellar envelopes, The Astrophysical Journal (accepted) arXiv:2005.02902.

[6] Schuhmann, Altwegg, Balsiger et al. Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA, Astronomy & Astrophysics 630, A31 (2019).

[7] Raponi, Ciarniello, Capaccioni et al. Infrared detection of aliphatic organics on a cometary nucleus, Nature Astronomy 4, 500 (2020).

Contacto

Gonzalo Santoro, Investigador del Grupo ESISNA del Programa FotoArt-CM, gonzalo.santoro@icmm.csic.es

Coordina FotoArt-CM: Víctor A. de la Peña O´Shea, Instituto IMDEA Energía.

Etiquetas:
Categorias: General

Superficies antimicrobianas basadas en recubrimientos fotocatalíticos

Autor: Ana Iglesias Juez. Instituto de Catálisis y Petroleoquímica. CSIC

En las últimas décadas, el aumento de la resistencia a los antibióticos convencionales ha derivado en un desarrollo importante de la investigación de estrategias alternativas para prevenir la diseminación de patógenos (destruir o suprimir la propagación de bacterias, virus y hongos).

Las superficies antimicrobianas, que contienen agentes biocidas, inhiben o reducen la capacidad de crecimiento de microorganismos en la superficie de los materiales. Son aplicables en el ámbito hospitalario y en la industria alimentaria para evitar infecciones pero también se pueden extender a todos aquellos entornos con gran tránsito de personas como guarderías y colegios, aeropuertos, instalaciones deportivas, restaurantes, hoteles, oficinas, estaciones de transporte masivo, aéreas residenciales… cuyas superficies de contacto se convierten en focos de propagación de infecciones y enfermedades, por las condiciones de aglomeración, calor y humedad.

Los recubrimientos basados en óxidos semiconductores fotoactivos tales como TiO2 y ZnO han recabado gran interés por su capacidad de desactivar una amplia variedad de microorganismos, previniendo problemas de infección y trasmisión. Además, confieren otras características adicionales a los materiales como pueden ser propiedades autolimpiantes o aumento de durabilidad y de resistencia. Los materiales fotocatalíticos promueven procesos químicos en la superficie del catalizador cuando éste es iluminado mediante una fuente de energía externa de luz UV o visible. Al iluminar el óxido semiconductor con luz de energía adecuada es posible excitar un electrón de la banda de valencia a la banda de conducción generando pares electrón-hueco que pueden dar lugar a reacciones químicas en la superficie generando radicales altamente oxidantes. Esto les confiere una gran actividad bactericida. Pero los pares electrón-hueco también pueden recombinarse liberando calor y, por tanto, sin producir ningún efecto desinfectante. Es crucial evitar los procesos de recombinación ya que compiten con los procesos químicos.

Entre los sistemas más prometedores se encuentran los basados en ZnO (bajo coste, alta actividad y estabilidad…), que presenta mejores actividades que el TiO2. Además es más seguro y su compatibilidad con la piel humana hacen que sea un aditivo adecuado para los materiales textiles y las superficies que entran en contacto con el cuerpo. Sin embargo, la mejora de la eficiencia fotocatalítica de ZnO para cumplir los requisitos de aplicación práctica sigue suponiendo un desafío, debido a la necesidad de reducir la recombinación de los pares electrón-hueco fotogenerados, que conduce a rendimientos pobres.

Recientemente, en el Instituto de Catálisis del CSIC en colaboración con la Universidad de Alcalá hemos desarrollado recubrimientos mejorados altamente eficientes combinando el ZnO con óxido de grafeno reducido (OGr). El grafeno (u OGr), posee una estructura de capa bidimensional de átomos de carbono que le confiere gran área superficial, alta conductividad eléctrica, propiedades mecánicas superiores. Además es biocompatible. Estas propiedades únicas hacen del grafeno un excelente material de transporte de electrones, que reduce la recombinación de cargas. El objetivo de este trabajo fue combinar las notables propiedades eléctricas y mecánicas que ofrece el OGr con el alto rendimiento antibacteriano de las nanopartículas de ZnO para preparar superficies fotoactivas bactericidas mejoradas.

Los materiales preparados mostraron excelentes propiedades de fotodesinfección debido a las especies oxidantes fotogeneradas que dañan la membrana celular de las bacterias y aumentan el nivel de estrés oxidativo intracelular. Las superficies recubiertas con ZnO-OGr permanecen esencialmente libres de colonización bacteriana y de formación de biopelículas.

La mejora del rendimiento fotocatalítico del ZnO tras la incorporación de OGr se debe a una mayor generación de los radicales oxidantes, atribuidos a la reducción de la recombinación de las cargas por interacción con el OGr. Paralelamente, el contacto íntimo entre ambos componentes confiere mayor estabilidad al recubrimiento al evitar la pérdida de zinc por lixiviación.

La alta actividad antibacteriana y la estabilidad de las superficies funcionalizadas con ZnO-OGr muestran un gran potencial para su uso como recubrimientos antimicrobianos eficientes.

Artículo de referencia

  1. L. Valenzuela, A. Iglesias-Juez, B. Bachiller-Baeza, M. Faraldos, A. Bahamonde, R. Rosal. Enhanced antimicrobial surfaces based on zinc oxide-reduced graphene oxide photocatalytic coatings. Applied Catalysis B. (2020) enviado, Ref. No.:  APCATB-D-20-01473.

Contacto

Ana Iglesias Juez, Investigadora del Grupo FCF del Programa FotoArt-CM, ana.iglesias@icp.csic.es

Coordina FotoArt-CM: Víctor A. de la Peña O´Shea, Instituto IMDEA Energía.

Etiquetas:
Categorias: General

SunDial: Diseño de un nuevo colector solar de concentración

Autores:

  • Rubén Abbas, Javier Muñoz-Antón, Luis F. González-Portillo, Andrés Sebastián, José Mª Martínez-Val, Universidad Politécnica de Madrid
  • Javier Cano Nogueras, Fundación para el Fomento de la Innovación Industrial
  • Antonio Rovira, María J. Montes, Universidad Nacional de Educación a Distancia

La descarbonización de la economía mundial requiere no solo esfuerzos en la penetración de las fuentes renovables en la generación eléctrica y en el transporte, sino también esfuerzos hacia fuentes renovables en el sector industrial. En este sentido, Unión Europea ha sido líder en el uso de calor solar para procesos industriales (SHIP)1, pero siempre con temperaturas inferiores a 150ºC. Sin embargo, una gran parte de la demanda térmico del sector industrial es a temperaturas bien superiores a los 150ºC, como se muestra en la Fig. 1.

Figura 1: Diferentes tecnologías SHIP para diferentes aplicaciones industriales en función del rango de temperaturas requerido.

Se puede observar que, si bien los colectores estacionarios son válidos para temperaturas inferiores de 100ºC, demandas energéticas a partir de 150ºC requiere de concentradores con seguimiento, principalmente lineales. La experiencia adquirida durante el desarrollo de la Electricidad Termo-solar de Concentración ha hecho que en los pocos proyectos existentes de SHIP se hayan usado concentradores muy similares. Sin embargo, para rangos de temperatura de entre 150ºC y 300ºC no es necesario el uso de tecnologías que son capaces de concentrar más de 60 soles. Por ello se ha llevado a cabo el diseño de un concentrador lineal basado en el reflector lineal Fresnel, con el objetivo de minimizar costes para las características térmicas solicitadas: el SunDIAL.

Diseño de SunDIAL

SunDIAL es una tecnología basada en varias patentes españolas (ES2596294B2, ES2345427B2 y ES2537607B2). Su concepto consiste en un concentrador lineal Fresnel de espejos fijos instalado sobre una plataforma rotativa, que sigue al sol de forma que esta que este se mantiene siempre en el plano de simetría del concentrador, ver Fig. 2. De esta forma, no es necesario un seguimiento individualizado de cada uno de los espejos y se simplifica la estructura del concentrador Fresnel.

Figura 2: Principio de funcionamiento de SunDIAL.

Un pequeño prototipo de este concepto ha sido construido en TecnoGETAFE para su demostración óptica. En dicho prototipo el concentrador descansa sobre una plataforma construida originalmente para un ring rotatorio de artes marciales, que disponía de un cojinete axial central. A este sistema se le añadieron dos filas de ruedas de nylon, estando dos de estas ruedas actuadas por dos motores eléctricos con reductoras 1600 a 1. De cara a la minimización del coste del prototipo, el seguimiento del sol se realizada mediante dos fotodiodos una placa situada en el plano de simetría, de forma que la plataforma se pone en movimiento cuando uno de los fotodiodos se encuentra a la sombra.

En cuanto a la superficie reflectante, anteriores estudios han demostrado que el uso de espejos curvos es necesario de cara a obtener rendimientos ópticos concentraciones relativamente altos con un número limitado de espejos3. Sin embargo, la adquisición de espejos curvos con curvaturas específicas conlleva un alto coste. Por ello, se ha ideado un mecanismo para instalación de espejos curvos a partir de espejos planos finos. Esto consiste en la aplicación de un par igual y de sentido contrario en los extremos laterales de un espejo, lo que le dota de una forma parabólica si el efecto de dicho par es significativamente mayor al efecto de la gravedad. En la imagen derecha de la Fig. 3 se puede observar cómo un espejo de 1 m de anchura es capaz de concentrar sobre una línea fina, lo que demuestra el óptimo funcionamiento del sistema. Obsérvese que la parte final de la imagen reflejada no está concentrada, pues las últimas pinzas se dejaron sueltas de cara a comprobar su efecto. 

Figura 3: Sistema de doblado de espejos (izquierda) y ensayo de comprobación visual de la concentración obtenida mediante el procedimiento patentado (derecha).

ASTEP: un proyecto europeo para el desarrollo de la tecnología

El sistema desarrollado hasta ahora se encuentra en un TRL3 en la actualidad. Sin embargo, en mayo comenzará un proyecto H2020 basado en el presente concepto que tiene como objetivo el desarrollo de la tecnología hasta un TRL5. Para ello, se construirán dos prototipos que serán instalados en dos industrias muy diferentes a latitudes diferentes: una fábrica de productos lácteos en Grecia y una fábrica de tubos de acero de ArcelorMittal en Rumanía.

Referencias

https://www.nrel.gov/docs/fy16osti/64709.pdf

2 P. F. I. Horta, “Technical Report A.1.3: Process Heat Collectors: State of the Art and available medium temperature collectors,” 2015.

3 Abbas, R; Muñoz-Antón, J; Valdés, M; Martínez-Val, JM; High concentration linear Fresnel reflectors, Energy Conversion and Management,72,60-68,2013, Pergamon

Contacto

Rubén Abbas, Investigador del Grupo UPM-GIT del Programa ACES2030-CM, rubenabbas@etsii.upm.es

Coordina ACES2030-CM: Manuel Romero Álvarez. IMDEA Energía

Etiquetas:

La luz visible desbloquea el acceso a fragmentos farmacológicamente relevantes

Autores: Alberto F. Garrido-Castro, M. Carmen Maestro y José Alemán

Resumen: El grupo difluorometilo (-CF2H) es un fragmento crucial en los ámbitos farmacéutico, agroquímico y de materiales. Sin embargo, la difluorometilación de enlaces C=N se ha descrito usando metodologías polares indirectas que presentan aplicabilidad restringida. Por ello, con el fin de desarrollar un protocolo directo para completar esta transformación, se ha llevado a cabo la adición directa del radical difluorometilo (•CF2H) a enlaces C=N basada en una activación fotocatalítica con luz visible. Las condiciones suaves de reacción dan lugar a una amplia diversidad estructural, llegando a funcionalizar quinoxalinonas y dibenzoacepinas, entre otros.

Abstract: The difluoromethyl (-CF2H) group represents a crucial moiety in pharmaceutical, agrochemical and material science. However, difluoromethyl addition to the C=N bond typically relies on multi-step two-electron approaches of restricted range and applicability. In an attempt to develop a direct protocol to complete this transformation, the current study presents a direct CF2H radical addition to C=N bonds predicated on photocatalytic activation using visible light. The mild conditions in place lead to impressive structural diversity, as quinoxalinones and dibenzazepines, among others, are successfully functionalized.

Se ha desarrollado una nueva metodología basada en el uso de la luz visible para preparar compuestos que presentan el grupo difluorometilo (-CF2H) de alta importancia en el sector farmacéutico.

El flúor es el halógeno más abundante sobre la Tierra y, sin embargo, ha tenido un papel insignificante durante la biosíntesis natural de moléculas orgánicas. Pese a la escasez de compuestos organofluorados en la Naturaleza, la sociedad química ha descubierto y explotado las propiedades únicas de estos compuestos durante décadas. Así, la química en los ámbitos farmacéutico, agrícola y de materiales se ha beneficiado de una gran variedad de estrategias innovadoras para incorporar flúor.

En el contexto del descubrimiento y desarrollo de fármacos, la instalación de grupos fluorometilo (-CFxHy) en moléculas orgánicas ha recibido una atención significativa. Más del 20% de los fármacos comercializados contiene al menos un átomo de flúor en su estructura. Esto se debe a que los compuestos fluoroalquilados suelen presentar una absorción y biodisponibilidad superior debido a: i) una mayor lipofilia que sus análogos no fluorados, lo cual lleva a una mejor permeabilidad a través de las membranas; ii) una gran resistencia frente a oxidaciones, resultando en una elevada estabilidad metabólica, y iii) una selectividad de unión a proteínas mejorada. Concretamente, el grupo difluorometilo (-CF2H) puede ser un isóstero de dadores de enlace de hidrógeno tradicionales como los alcoholes, tioles o ácidos hidroxámicos.

Generación del radical •CF2H y adición directa a una gran variedad de enlaces C=N

Debido a la gran dificultad que existe para llevar a cabo la adición del grupo -CF2H de manera directa a compuestos de tipo imina (enlace C=N), se ha desarrollado una nueva metodología que permite acceder a aminas α-difluorometiladas. La síntesis de estas importantes estructuras únicamente se había conseguido mediante estrategias polares empleando varias etapas de reacción. Gracias al uso de la fotocatálisis con luz visible (LEDs azules), se ha podido llevar a cabo la transformación de manera directa con esta nueva metodología radicalaria.

El protocolo descrito está basado en la activación fotocatalítica de un precursor del radical difluorometilo (·CF2H); una sal de elevada disponibilidad comercial y manejo experimental sencillo que es la base de una metodología de fácil ejecución. La reacción se puede llevar a cabo bajo unas condiciones de reacción suaves que dotan a la misma de una gran flexibilidad y variedad estructural, llegando a funcionalizar compuestos de un carácter muy variado como las quinoxalinonas, de gran actividad antimicrobiana, antiviral y antitumoral, y las dibenzoacepinas, conocidas como los antipsicóticos de segunda generación.

Referencia bibliográfica:

Garrido-Castro, A. F.; Gini, A.; Maestro, M. C.; Alemán, J. “Unlocking the Direct Photocatalytic Difluoromethylation of C=N BondsChem. Commun. 2020, Advance Article. DOI: 10.1039/D0CC01353F.

Contacto

José Alemán, Responsable del Grupo FRUAM del Programa FotoArt-CM – jose.aleman@uam.es

Coordina FotoArt-CM: Víctor A. de la Peña O´Shea, Instituto IMDEA Energía.

Etiquetas:
Categorias: General

Integrando la tecnología termosolar en tratamiento térmico de áridos

Autores: Sebastián Taramona Fernández, Jesús Gómez Hernández y Domingo Santana

Los ambiciosos objetivos de descarbonización del sistema energético fijados por la Comisión Europea implican que será necesario disponer de tecnologías renovables económicamente viables en un horizonte cercano. Así, será posible sustituir las actuales tecnologías basadas en combustibles fósiles, permitiendo la integración de la tecnología termosolar con la industria.

En el ámbito de las tecnologías renovables, lo primero que surge en la mente son los parques eólicos o los paneles fotovoltaicos, ya que son las tecnologías que más desarrollo han tenido en la última década. Sin embargo, existen muchas otras tecnologías menos conocidas, entre las que se encuentran las plantas termosolares, que se basan en la concentración de la radiación solar en un receptor.

Diseño del campo solar lineal Beam-down y del receptor de partículas

Nuestra tecnología propone un nuevo enfoque para conseguir tratar térmicamente partículas o áridos en receptores solares. Para ello, se redirecciona la concentración sobre el receptor, que estará instalado en el suelo. Como se puede ver en la imagen, se emplean espejos Fresnel como campo solar primario, y una segunda reflexión como campo solar secundario. El reflector secundario debe ser hiperbólico, ya que esta forma geométrica permite redirigir todos los rayos apuntados al primer foco, hacia el segundo foco, que será ubicado junto con el receptor.

Figura 1. Campo solar lineal Beam-down. Todas las dimensiones están en cm.

Este campo solar fue estudiado por los autores estudian en [1], donde se analiza la influencia del empleo de espejos primarios completamente planos o con una ligera curvatura. Para una posición de los espejos primarios fija, la excentricidad de la hipérbola que describe el reflector secundario modifica en gran medida la concentración solar conseguida en el receptor. En este sentido, la Figura 2 muestra la concentración solar sobre el receptor, representado como QBD en la Figura 1.

 

Figura 2. Concentración solar sobre el receptor de partículas para: (a) espejos completamente planos y (b) espejos con curvatura.

El receptor solar recibirá la radiación verticalmente, que servirá para calentar partículas. Estas partículas se pueden utilizar como medio de almacenamiento térmico, o se pueden integrar en un proceso de tratamiento de materiales para conseguir unas propiedades deseadas. Ente las potenciales aplicaciones estaría el secado y/o la calcinación de áridos.

En la Figura 3 se muestra el diseño de receptor solar de lecho fluidizado, en donde se promueve la recirculación de los gases de fluidización entre lechos mientras se consigue el movimiento horizontal de las partículas. En esta imagen, los espejos primarios (LFR, Linear Fresnel Reflector) redirigen los rayos solares al reflector secundario (LBD, Linear Beam-Down) hacia el receptor solar (LPSR, Linear Particle Solar Receiver). Por otro lado, el aire de fluidización se consigue mediante un compresor de aire. De esta forma, la mezcla de aire y partículas se comportará como un fluido, es decir, como un lecho fluidizado, y se irá calentando progresivamente en el receptor solar.

Figura 3. Esquema del campo de heliostatos y del receptor solar.

Acciones futuras

En primer lugar, se espera incrementar el atractivo de los campos solares de tipo Fresnel: al aumentar los rendimientos y mantener los costes lo más bajos posibles, se pretende aumentar la competitividad de este tipo de instalaciones.

Finalmente se espera generar una disminución de las emisiones de CO2, primero por la adopción de esta tecnología en el ámbito de la generación eléctrica, y en segundo lugar por la sustitución de los hornos rotativos de secado, que utilizan calderas convencionales, por campos de secado termosolares.

Referencias

[1] Gómez-Hernández, J., González-Gómez, P., Briongos, J. and Santana, D. (2020). Technical feasibility analysis of a linear particle solar receiver. [online] Madrid. Available at: https://doi.org/10.1016/j.solener.2019.11.052

[Accessed 21 Feb. 2020].

Contacto

Domingo J. Santana, Responsable del Grupo UC3M-ISE (Universidad Carlos III de Madrid) del Programa ACES2030-CM dsantana@ing.uc3m.es

Coordina ACES2030-CM: Manuel Romero Álvarez. IMDEA Energía

Etiquetas:
Categorias: General

Rutas alternativas para la fabricación de nanopartículas con aplicaciones en catálisis

Autor: Lidia Martínez, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Las nanopartículas son objetos de tamaño nanométrico (típicamente de 1 a 100 nm) que, debido a sus reducidas dimensiones, tienen un número de átomos en superficie del mismo orden o incluso superior al número de átomos de volumen. Esto hace que las propiedades de un material cambien significativamente cuando está en la nanoescala. Un claro ejemplo de ello es el oro, un material ampliamente conocido por su característico color amarillo y por ser inerte tal y como lo conocemos en nuestra vida cotidiana. Pues bien, cuando lo reducimos a la escala nanométrica, su coloración cambia en función del tamaño, pudiendo ser morado, naranja o rojo. Esto se debe a un cambio en sus propiedades ópticas (como curiosidad, las vidrieras son un ejemplo de utilización de nanopartículas de Au y Ag como impurezas). Además, en la nanoescala el oro pasa de ser un material inerte a un buen catalizador del monóxido de carbono.

Un catalizador en la nanoescala ofrece la ventaja de maximizar por tanto el área superficial, aumentando en número de sitios activos, a la vez que se minimiza la carga de catalizador. Esto puede ser crucial cuando se usan catalizadores basados en metales nobles y escasos, ya que implica un ahorro en  costes significativo. Tradicionalmente los catalizadores se sintetizan por vía química. Estos métodos ofrecen un control preciso de la composición y el tamaño de las nanopartículas, pero conllevan el uso de agentes químicos que (i) en ocasiones no son amigables con el medioambiente y (ii) deben ser correctamente eliminados tras el proceso de fabricación para que no altere las prestaciones del catalizador. Existe otra ruta de síntesis que puede representar una alternativa complementaria a estos métodos: la síntesis de nanopartículas en fase gas. Éstos son métodos libres de ligandos y, por tanto, más cercanos a una síntesis verde amigable con el medioambiente. Además, estas técnicas permiten realizar de manera precisa estudios modelo con pequeños agregados de 0.5 a 2 nm (< 200 átomos), donde hay una rápida evolución de la estructura atómica y electrónica [Vadja and White, 2015]. Estas técnicas se basan en la generación de un vapor sobresaturado (habitualmente de un metal con un gas inerte) que da lugar a una condensación y coalescencia de los átomos metálicos para formar nanopartículas. Dentro de las múltiples variantes que ofrecen estos métodos, los basados en la pulverización catódica (“magnetron sputtering”), son los que ofrecen una mayor proyección para aplicaciones donde tengan que generarse grandes cantidades de nanopartículas.  Con esta técnica se han reportado, por ejemplo, estudios donde una única nanopartícula de paladio actúa como nanoportal, haciendo de electrodo de una reacción electroquímica [Datta et al.2019], o estudios con nanopartículas de aluminio donde, gracias a su resonancia de plasmón localizado en el ultravioleta, produce un aumento de la eficiencia fotocatalítica del óxido de titanio [Ghori et al., 2018]. En definitiva, este método de fabricación proporciona una plataforma idónea de fabricación de sistemas ultra-puros en ultra-alto vacío, fundamentales para estudiar las propiedades de los materiales en la nanoescala.

En el Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), hemos desarrollado un sistema multi-magnetrón que representa una evolución de este método de fabricación, al aportar una versatilidad en cuanto a la elección no sólo de la composición, sino también de la estructura de las partículas, pudiendo por ejemplo elegir entre combinaciones de elementos que estén aleados [Martínez et al, 2012] o en capas [Llamosa et al., 2014]. Hace unos años realizamos un escalado de este equipo para lograr altos flujos de nanopartículas, manteniendo la versatilidad estructural que ofrece el diseño original [Martínez at al., 2018]. Este equipo es el corazón de Stardust, un sistema experimental único en el mundo que se ha desarrollado en el contexto del proyecto Europeo ERC Synergy grant NANOCOSMOS, para simular en el laboratorio la formación de polvo cósmico y su evolución hacia el medio interestelar [Martínez et al, 2019]. Más allá del campo de la astrofísica de laboratorio, Stardust ofrece unas posibilidades únicas de adentrarnos en la síntesis de nanopartículas con distintas estructuras para aplicaciones en catálisis, que queremos explorar en el contexto del proyecto FotoArt-CM.

Adaptado de Palmer (2018)

Referencias

Datta A., Porkovich A. J., Kumar P., Nikoulis G., Kioseoglou J., T. Sasaki, Steinhauer S., Grammatikopoulos P., Sowwan M. (2019) Single Nanoparticle Activities in Ensemble: A Study on Pd Cluster Nanoportals for Electrochemical Oxygen Evolution Reaction, J. Phys. Chem. C, 123 (43) 26124-26135.

Ghori M. Z., Veziroglu S., Hinz A., Shurtleff B. B., Polonskyi O., Strunskus T., Adam J., Faupel F., Aktas O. C. (2018), Role of UV Plasmonics in the Photocatalytic Performance of TiO2 Decorated with Aluminum Nanoparticles, ACS Appl. Nano Mater. 1 (8) 3760-3764.

Llamosa D., Ruano M., Martínez L., Mayoral A., Roman E., García-Hernández M., Huttel Y. (2014), The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles, Nanoscale, 6, 13483-13486.

Martínez L., Díaz M., Román E., Ruano M., Llamosa D., Huttel Y. (2012) Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances, Langmuir, 28 (30) 11241-11249.

Martínez L., Lauwaet K., Santoro G., Sobrado J.M., Peláez R.J., Herrero V.J., Tanarro I., Ellis G., Cernicharo J., Joblin C., Huttel Y., Martín-Gago J.A. (2018), Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles, Scientific Reports, 8,  7250.

Martínez, L., Santoro, G., Merino, P., Accolla M., Lauwaet K., Sobrado J., Sabbah H., Pelaez R. J., Herrero V. J., Tanarro I., Agúndez M., Martín-Jimenez A., Otero R., Ellis G. J., Joblin C., Cernicharo J. and Martín-Gago J. A. (2019) Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nat. Astron., doi:10.1038/s41550-019-0899-4.

Palmer R. E., Cai R., Vernieres J. (2018), Synthesis without Solvents: The Cluster (Nanoparticle) Beam Route to Catalysts and Sensors, Acc. Chem. Res., 51 (9) 2296-2304.

Vadja S., White M. G. (2015) Catalysis Applications of Size-Selected Cluster Deposition, ACS Catalysis, 5, 7152-7176.

Contacto

Jose Ángel Martín Gago, Responsable de Grupo ESISNA del Programa FotoArt-CM.– gago@icmm.csic.es

Coordina FotoArt-CM: Víctor A. de la Peña O´Shea, Instituto IMDEA Energía.

Etiquetas:
Categorias: General

UCRA’19. “First conference of Unconventional Catalysis, Reactors and Applications”

Autor: Ana Serrano-Lotina-Instituto de Catálisis y Petroleoquímica-CSIC

A mediados de octubre se celebró en Zaragoza la primera conferencia relacionada con catálisis, reactores y aplicaciones no convencionales,

UCRA2019. El congreso contó con más de 120 asistentes y se han presentado un total de 264 comunicaciones, de las cuales 49 fueron orales y 36 póster.

Se presentaron además 4conferenciasplenarias:

PL.1 Richard van de Sanden (Dutch Institute for Fundamental Energy Resarch, Holland). “Recent trends in renovawable energy driven chemistry for energy conversion and storage: plasma chemistry as the special case”

PL.2 Jean-Luc Dubois (Arkema, France). “What 3D printing/Additive manufacturing can deliver to chemical industries”.

PL.3 Asier Unciti-Broceta (University of Edinburgh, UK). “Biocompatible catalytic devices and bioorthogonally-activated prodrugs to mediate local chemotheraphy”

PL.4 Dionisos Vlachos (University of Delaware, USA). “Computation-driven catalyst Discovery”.

Y 4 presentaciones magistrales:

K.1 Mechanochemical catalysts design and applications. Rafael Luque (Universidad de Córdoba, España).

K.2 Structured reactors under incuctive heating. Evgeny Rebrov (University of Warwick, UK).

K.3 Spatially structured catalysts and reactors for the transformation of CO2 to useful chemicals. Jorge Gascón (KAUST Catalysis Center, Saudi Arabia).

K.4 Direct heating of heterogeneous catalysts by microwaves: Minimizing unwanted gas phase chemistry. Jose Luis Hueso (Universidad de Zaragoza, España).

La organización de esta conferencia se inspiró en las tendencias observadas en el campo de la catálisis heterogénea en los últimos años. Las investigaciones van más allá de las aplicaciones tradicionales en reactores industriales y se expanden a nuevas áreas, como la salud, el medioambiente o la energía. Los catalizadores emergentes operan en entornos no convencionales, como células vivas, líquidos iónicos o fluidos supercríticos. Además, se exploran métodos no convencionales para la activación selectiva del catalizador, como microondas, ultrasonidos o campos magnéticos, reemplazando el calentamiento tradicional de reactores basado en la quema de combustibles fósiles.

La catálisis no convencional define un campo de investigación en el que las colaboraciones interdisciplinares entre la catálisis clásica, la ingeniería química y de materiales, la física, la tecnología energética, la biología o la medicina desempeñan un papel central. El objetivo de esta conferencia fue reunir a representantes de esas disciplinas y proporcionar información sobre los últimos desarrollos realizados. La conferencia cubrió una amplia selección de temas, desde métodos de síntesis de catalizadores no convencionales, formas novedosas de activar catalizadores, catálisis en entornos no convencionales o el diseño de reactores adecuados para nuevas formas de inducir reacciones químicas. El Instituto de Catálisis y Petroleoquímica (CSIC) contribuyó con 5 comunicaciones tipo poster y 3 comunicaciones orales versadas sobre la síntesis de nanotubos de titania, las ventajas e inconvenientes de la co-inmovilización de enzimas y los protocolos de inmovilización para la obtención de fosfolípidos ricos en ácido linoleico conjugado (CLA).

Contacto

Pedro Ávila, Responsable de Grupo ECI-CSIC del Programa ACES2030-CM. pavila@icp.csic.es. Coordina ACES2030-CM Manuel Romero del Instituto IMDEA Energía.

Etiquetas:

Nanopartículas: aplicaciones y toxicología

Autores: Víctor Alcolea, CSIC, Instituto de Catálisis y Petroleoquímica

La nanotecnología se dedica al diseño y manipulación de la materia a escala nanométrica (10-9 m). Las nanopartículas (NP) son una amplia clase de materiales con un tamaño inferior a 100 nm en una de sus tres dimensiones. Muestran propiedades físico-químicas únicas, por lo que representan, cada vez más, un nuevo tipo de materiales importantes para el desarrollo de nanodispositivos con aplicaciones médicas, físicas, farmacéuticas y/o químicas. En el ámbito médico, las NPs han resultado de gran interés para la fabricación de nuevos sistemas de liberación controlada de fármacos, cuyo objetivo es la dosificación óptima del principio activo. En otros ámbitos, como el medioambiental, se han empezado a utilizar nanopartículas de óxido de hierro para eliminar, mediante absorción, metales pesados como el mercurio o arsénico de aguas contaminadas [1].

Actualmente todas las personas estamos en contacto permanente con nanomateriales, ya que, debido a su gran utilidad, se fabrican a nivel industrial y están presentes en fertilizantes, combustibles y cosméticos, entre otros. Un ejemplo son las NPs de óxido de titanio (TiO2), las cuales se utilizan para proporcionar un pigmento blanco y brillante a los cosméticos [2], entre otros muchos usos. El pequeño tamaño de estos materiales permite que estemos expuestos a ellos mediante tres posibles vías: dérmica (en contacto con la piel), inhalación o ingestión. Por lo tanto, debemos preguntarnos si pueden ser dañinas para el ser humano, y si lo son ¿a partir de qué concentraciones o tamaños?

En la actualidad se están llevando a cabo una gran cantidad de investigaciones acerca de la toxicología de las diferentes nanopartículas [3]. Varios estudios concluyen que existen ciertos tipos de nanomateriales que tienen la capacidad de reaccionar con el medio reductor de las células, llevando a cabo un proceso denominado estrés oxidativo, el cual se relaciona con una gran cantidad de enfermedades de alta prevalencia como Alzheimer, diabetes o diferentes tipos de cáncer [4].

Ilustración 1. Patologías asociadas a la interacción con nanopartículas. Reproducido de Buzea, Pacheco, & Robbie, 2007 con el permiso de la American Vacuum Society (https://doi.org/10.1116/1.2815690)

La toxicología de las NPs dependerá de diferentes factores: composición, morfología, estructura cristalina, tamaño y propiedades superficiales (porosidad, área superficial específica y química superficial). En conclusión, una NP podrá ser más o menos tóxica en función de su capacidad para producir reacciones indeseadas en nuestro organismo [5].

De cara al futuro, el objetivo es predecir la toxicología de estos nuevos materiales para minimizar sus efectos negativos sobre la salud y hacer uso de ellos de manera responsable. Para ello se están haciendo grandes esfuerzos en medir las propiedades que determinan la toxicidad, modelizar los nanomateriales y su comportamiento, y estandarizar tanto los procesos de modelado como de caracterización para obtener información fiable y armonizada. Ejemplo de ello son los proyectos europeos BioRiMa y NanoInformaTIX, en los que participa el ICP-CSIC.

Bibliografía

[1]      I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., 2017.

[2]      C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: Sources and toxicity,” Biointerphases, vol. 2, no. 4, pp. MR17–MR71, 2007.

[3]      M. A. Bañares, L. Tran, and R. Rallo, Modelling the Toxicity of Nanoparticles, Springer., vol. 947. Cham: Springer International Publishing, 2017.

[4]      Z. H. Rappaport, “Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal Antonio,” Acta Neurochir. Suppl., vol. 98, pp. 9–12, 2006.

[5]      M. van Pomeren, W. J. G. M. Peijnenburg, N. R. Brun, and M. G. Vijver, “A novel experimental and modelling strategy for nanoparticle toxicity testing enabling the use of small quantities,” Int. J. Environ. Res. Public Health, vol. 14, no. 11, 2017.

 Contacto

Pedro Ávila, Responsable de Grupo ECI-CSIC del Programa ACES2030-CM. pavila@icp.csic.es. Coordina ACES2030-CM Manuel Romero del Instituto IMDEA Energía.

Etiquetas:
Categorias: General