Nanocubos magnéticos para destruir células cancerosas

Un equipo internacional estudia la posibilidad de destruir células cancerosas utilizando nanopartículas que se unen a las mitocondrias de las células y rotan por efecto de un campo magnético

Un reciente trabajo de investigación liderado por la Universidad de Tongji en Shanghai, en el que ha participado la Universidad Politécnica de Madrid (UPM), ha conseguido demostrar in vitro que es posible emplear nanopartículas cúbicas capaces de unirse a las mitocondrias de células cancerosas y destruirlas gracias a las fuerzas inducidas por un campo magnético. El trabajo ha sido publicada en la revista Small.

A la izquierda, imagen de nanocubos obtenida en microscopio electrónico de transmisión. En ella puede verse que el tamaño de los nanocubos es cercano a 20 nm. A la derecha, imagen de células cancerosas en un cultivo, que han internalizado nanocubos. La imagen se ha obtenido utilizando microscopía de fluorescencia y muestra, superpuestas, en verde la localización de mitocondrias y en rojo de nanocubos funcionalizados (Fuente: M. Chen, J. Wu, G.R. Plaza, Y. Cheng).

En los últimos años, la investigación y desarrollo de tecnología basada en el empleo de nanopartículas en el campo biomédico está en auge debido al gran abanico de potenciales aplicaciones que van desde la obtención de imágenes médicas hasta el uso de las nanopartículas para eliminar tumores. En el caso de la eliminación de tumores, una primera aproximación consiste en producir una elevación de la temperatura ꟷhipertermiaꟷ para dar lugar a la muerte de las células cancerosas. Dicho efecto puede conseguirse con nanopartículas magnéticas y campos magnéticos variables de alta frecuencia. También se ha estudiado la posibilidad de utilizar nanopartículas magnéticas y campos magnéticos de dirección variable con frecuencias bajas, que puedan producir fuerzas sobre las partículas. Es esta última aproximación la que se ha explorado en este nuevo estudio.

En el trabajo publicado en la revista Small, un equipo internacional en el que ha participado Gustavo Plaza, del Centro de Tecnología Biomédica de la UPM, se han sintetizado nanopartículas en forma de cubo, con un lado de aproximadamente 20 nanómetros. Estas nanopartículas contienen átomos de zinc, hierro y oxígeno, lo que les hace responder a campos magnéticos. Por aplicación de uno de estos campos, las nanopartículas tienden a agregarse y si el campo magnético tiene una orientación que rota a lo largo del tiempo el grupo de nanopartículas también tiende a rotar. Ese efecto es el que se ha empleado en este estudio para dañar las membranas de mitocondrias. Además, la superficie de estas nanopartículas está recubierta con el grupo químico trifenilfosfonio, que favorece que tras ser internalizadas por las células las nanopartículas se unan a las mitocondrias.

Así, los investigadores han comprobado que, en cultivos de células cancerosas, las células internalizan las nanopartículas y que, una vez dentro, las nanopartículas tienden a agruparse unidas a las mitocondrias. En esa situación, la aplicación de un campo magnético rotatorio da lugar a la permeabilización de las membranas de las mitocondrias y así se puede desencadenar el procedo de apoptosis, que produce la muerte celular.

“Hemos identificado las sucesivas etapas que permiten el paso de las nanopartículas desde el medio extracelular hasta la superficie de las mitocondrias”, explica Gustavo Plaza. “Esta aportación”, continúa, “es un paso significativo en el desarrollo de la tecnología que nos permita combinar nanopartículas magnéticas y campos rotatorios de bajas frecuencias para una destrucción eficiente de tumores.”

La contribución de la Universidad Politécnica de Madrid en colaboración con la Universidad de Tongji ha sido posible gracias a los programas de intercambio de estudiantes e investigadores y de promoción de desarrollo conjunto de actividades de investigación. La colaboración entre ambas universidades se ha mantenido, de forma fructífera, desde el inicio del siglo XXI.


Referencia bibliográfica:

Chen, MW; Wu, JJ; Ning, P; Wang, JJ; Ma, Z; Huang, LQ; Plaza, GR; Shen, YJ; Xu, C; Han, Y; Lesniak, MS; Liu, ZM; Cheng, Y. Remote Control of Mechanical Forces via Mitochondrial-Targeted Magnetic Nanospinners for Efficient Cancer Treatmen. SMALL, Volume 16, Issue 3 January 2020 https://doi.org/10.1002/smll.201905424

Añadir nuevo comentario

Para el envío de comentarios, Ud. deberá rellenar todos los campos solicitados. Así mismo, le informamos que su nombre aparecerá publicado junto con su comentario, por lo que en caso que no quiera que se publique, le sugerimos introduzca un alias.

    Normas de uso:  
  • Las opiniones vertidas serán responsabilidad de su autor y en ningún caso de www.madrimasd.org  
  • No se admitirán comentarios contrarios a las leyes españolas o buen uso.  
  • El administrador podrá eliminar comentarios no apropiados, intentando respetar siempre el derecho a la libertad de expresión.  


CAPTCHA de imagen
Introduzca los caracteres mostrados en la imagen.

Responsable del tratamiento: FUNDACIÓN PARA EL CONOCIMIENTO MADRIMASD con domicilio en C/ Maestro Ángel Llorca 6, 3ª planta 28003 Madrid. Puede contactar con el delegado de protección de datos en dpd@madrimasd.org. Finalidad: Publicar los comentarios recibidos y conocer el interés que suscita el boletín por áreas geográficas. Por qué puede hacerlo: Por el interés legítimo de favorecer la participación y el debate en el ámbito de la tecnología, la ciencia y la innovación, y en atención a su solicitud. Comunicación de datos: Su comentario es publicado al pie de la noticia junto con su nombre o alias. Derechos: Acceso, rectificación, supresión, oposición y limitación del tratamiento. Puede presentar una reclamación ante la Agencia Española de Protección de datos (AEPD). Más información: En el enlace Política de Privacidad..