La edad es algo más que un número. El aprendizaje automático podría predecir el envejecimiento
Los profesionales médicos y la ciencia han observado durante mucho tiempo que la edad biológica y la edad cronológica no siempre coinciden. Un niño de 5 años puede presentar muchos signos de vejez y padecer numerosas enfermedades relacionadas con la edad, mientras que un una persona mayor de 80 años puede ser sano y robusto. Si bien los factores ambientales como la dieta, la actividad física y otros factores juegan un papel muy importante, hay muchos otros factores que contribuyen también a diferenciar cómo algunas personas envejecen mejor que otras. Esos factores siguen siendo aún poco conocidos…
Hace pocos días un estudio publicado en la revista Genome Biology , un equipo de investigadores del Instituto Salk de Estudios Biológicos de California, ha desarrollado un proyecto de investigación mediante el análisis de células de la piel en muestras humanas tomados de 133 individuos sanos con edades comprendidas entre 1 y 94 años, con el objetivo de encontrar «firmas moleculares» que puedan predecir la edad biológica. Los investigadores se centraron en un tipo de célula de la piel llamada fibroblastos dérmicos, que generan tejido conectivo y ayudan a la piel a sanar después de una lesión. Eligieron este tipo de células por dos razones: primero, las células son fáciles de obtener con una biopsia de piel simple y no invasiva; en segundo lugar, estudios anteriores indicaron que es probable que los fibroblastos contengan firmas de envejecimiento. Esto se debe a que, a diferencia de la mayoría de los tipos de células que se regeneran por completo cada pocas semanas o meses, un subconjunto de estas células permanecen durante toda nuestra vida.
Para obtener una muestra representativa, el equipo estudió un promedio de 13 personas por cada década de edad. El laboratorio cultivó las células para multiplicarlas, luego usó un método llamado secuenciación del ARN (RNA-Seq) para buscar biomarcadores en las células que cambian a medida que las personas envejecen. La peculiaridad de la investigación ha sido la utilización de técnicas de aprendizaje automático e inteligencia artificial mediante el entrenamiento de algoritmos personalizados para clasificar los datos del RNA-Seq. El equipo encontró ciertos biomarcadores que indicaban el envejecimiento y podían predecir la edad de una persona con un error de menos de ocho años de promedio. Para la validación del algoritmo, el equipo utilizó fibroblastos de 10 pacientes con progeria, una enfermedad genética caracterizada por el envejecimiento prematuro. Basado en el análisis de las firmas moleculares de estos pacientes, que tenían entre dos y ocho años, el modelo predijo que sería aproximadamente una década mayor que su edad cronológica.
El objetivo de perfeccionar este algoritmo es que pueda predecir un envejecimiento saludable y un envejecimiento no saludable, y tratar de encontrar las diferencias. El estudio trata de proporcionar una base para abordar las cuestiones no resueltas en el envejecimiento humano, como es la cuantificación de la tasa de envejecimiento en momentos de estrés.
El análisis del equipo de Salk fue diferente de los enfoques anteriores tomados por otros laboratorios para estudiar el envejecimiento biológico. La mayoría de los estudios anteriores se centraron en los cambios en solo unos pocos sitios de metilación del ADN, en lugar de observar los cambios de expresión en todo el genoma. El conjunto de datos también fue mucho más grande que cualquier investigación de este tipo que se haya hecho antes, porque incluía a muchas personas que representan un rango de décadas. Los investigadores han hecho públicos los datos para que otros investigadores puedan usarlos.
Desarrollar una mejor comprensión de los procesos biológicos del envejecimiento podría eventualmente ayudar a abordar las condiciones de salud que son más comunes en la vejez, como las enfermedades cardíacas y la demencia. Además si los hallazgos son validados, los médicos podrían usar este tipo de análisis para determinar cuándo comenzar a evaluar a sus pacientes para detectar afecciones relacionadas con la edad y aconsejarles de forma preventiva sobre opciones de estilo de vida saludables más personalizadas.
El siguiente paso de la investigación será buscar estas firmas moleculares en otros tipos de células para confirmar estas hipótesis.
Referencia: Jason G. Fleischer, Roberta Schulte, Hsiao H. Tsai, Swati Tyagi, Arkaitz Ibarra, Maxim N. Shokhirev, Ling Huang, Martin W. Hetzer, Saket Navlakha. Predicting age from the transcriptome of human dermal fibroblasts. Genome Biology, 2018; 19 (1) DOI: 10.1186/s13059-018-1599-6
creo que queda mucho por aprender aun.
Interesante artículo, está claro que la edad biológica y cronológica no siempre coinciden.