A LA IZQUIERDA: Imagen de la galaxia NGC4993 tomada por DES (Dark Energy Survey)  el 18 de agosto de 2017 en la que se señala la posición de la primera detección óptica de la explosión (Kilonova) resultante del choque de dos estrellas de neutrones. DERECHA: Imagen de la misma galaxia tomada 14 días después,  en la ya no se ve rastro de la explosión.
Fecha
Fuente
UAM - mi+d

Detectan la contrapartida óptica de las últimas ondas gravitacionales de LIGO / Virgo

Un equipo de científicos, utilizando la <a href="https://www.darkenergysurvey.org/the-des-project/instrument/" title="Dark Energy Camera" alt="Dark Energy Camera" target="_blank">Dark Energy Camera</a> (DECam), la herramienta principal de observación del <a href="https://www.darkenergysurvey.org/" title="Dark Energy Survey" alt="Dark Energy Survey" target="_blank">Dark Energy Survey</a> (DES), ha sido uno de los primeros en registrar imágenes ópticas de la colisión de dos estrellas de neutrones, descubierta por las colaboraciones <a href="http://www.ligo.org/sp/index.php" title="Laser Interferometer Gravitational-Wave Observatory" alt="Laser Interferometer Gravitational-Wave Observatory" target="_blank">LIGO</a> y <a href="http://www.virgo-gw.eu/" title="Virgo" alt="Virgo" target="_blank">Virgo</a> mediante la observación de ondas gravitacionales. Es la primera vez que se detecta una colisión bien confirmada entre dos estrellas de neutrones y es también la primera vez que se detecta una fuente cósmica simultáneamente en ondas gravitacionales y electromagnéticas.

Los científicos de DES unieron fuerzas con un equipo de astrónomos, con sede en el Centro Smithsonian de Astrofísica (CfA) de Harvard, y juntos han trabajado utilizando varios observatorios de todo el mundo, para confirmar sus datos originales. Las imágenes tomadas con DECam capturaron el destello de una kilonova -una explosión similar a una supernova, pero en menor escala- que ocurre cuando dos estrellas colapsadas (llamadas estrellas de neutrones) chocan entre sí, creando elementos radiactivos pesados.

Esta fusión, particularmente violenta, que ocurrió hace 130 millones de años en una galaxia cercana a la nuestra (NGC 4993), es la fuente de las ondas gravitacionales detectadas por las colaboraciones Laser Interferometer Gravitational-Wave Observatory (LIGO) y Virgo el 17 de agosto. Esta es la quinta fuente de ondas gravitacionales que se detecta -la primera se descubrió en septiembre de 2015- por lo cual los tres miembros fundadores de la colaboración LIGO fueron galardonados con el Premio Nobel de Física hace dos semanas.

Este último evento supone la primera detección de ondas gravitacionales causadas por la colisión de dos estrellas de neutrones y, en consecuencia, la primera que tiene una fuente visible. Las detecciones previas de ondas gravitacionales se debían a la colisión de dos agujeros negros, que no pueden ser observados con telescopios. Esta colisión de estrellas de neutrones se produjo relativamente cerca de la Tierra, por lo que en el plazo de unas pocas horas tras recibir la noticia de LIGO/Virgo, los científicos fueron capaces de apuntar sus telescopios en la dirección del evento y conseguir una imagen clara de la luz emitida en la colisión.

Uno de los más importantes registros de esta kilonova se obtuvo con DECam. Este es uno de los dispositivos de toma de imágenes digitales más potentes que existen. Se construyó y probó en Fermilab, el laboratorio que lidera la colaboración DES, que cuenta con una contribución significativa de científicos e ingenieros españoles, y está montada en el telescopio Blanco, de 4 metros, perteneciente a la National Science Foundation, y situado en el observatorio de Cerro Tololo, en Chile. Las imágenes de DES se procesan en el National Center for Supercomputing Applications de la Universidad de Illinois, en Urbana-Champaign.

Los científicos de LIGO/Virgo trabajan con docenas de colaboraciones astronómicas de todo el mundo, las cuales proporcionan imágenes de las zonas del cielo donde se originan las ondas gravitacionales detectadas. El equipo de DES y CfA se ha estado preparando para un evento como este durante más de dos años, forjando conexiones con otras colaboraciones astronómicas y poniendo en marcha un protocolo para movilizarse rápido cada vez que se detecta una nueva fuente. De esta forma, a las pocas horas de recibir la información acerca de la localización en el cielo, el equipo había reservado tiempo en varios observatorios, incluyendo el telescopio espacial Hubble de la NASA y el observatorio espacial de rayos-X Chandra. El resultado es un conjunto de datos muy rico que cubre toda la radiación electromagnética, desde las ondas de radio hasta los rayos X.

Para añadir aún más emoción a la observación, esta última detección de ondas gravitacionales se correlaciona con una explosión de rayos gamma detectada por el telescopio espacial Fermi de la NASA y más tarde en rayos X por el telescopio Integral de la ESA. La combinación de todas estas detecciones es como ver un rayo y escuchar el trueno correspondiente por primera vez, y abre un mundo de nuevos descubrimientos científicos.

Este evento también proporciona una manera única y completamente nueva de medir el ritmo de expansión del universo, la constante de Hubble. Igual que los astrofísicos utilizan supernovas como candelas estándar (objetos con un brillo intrínseco conocido) para medir la expansión cósmica, las kilonovas se pueden utilizar como sirenas estándar (objetos cuya intensidad en ondas gravitacionales es conocida). Los científicos de LIGO/Virgo pueden utilizar este hecho para medir la distancia a dichos eventos, mientras que del seguimiento en óptico con DES y otros telescopios se obtiene el desplazamiento al rojo o la velocidad de recesión. La combinación de ambas medidas permite a los científicos determinar el ritmo de expansión actual. Este nuevo tipo de medida es complementaria a otras que hace DES en su misión de avanzar en la comprensión de la energía oscura, la misteriosa sustancia responsable de la aceleración actual en la expansión del universo.

Según Juan García-Bellido, uno de los responsables del análisis de la kilonova en DES, "el grupo de ondas gravitacionales del cartografiado DES lleva trabajando desde hace al menos dos años para el seguimiento óptico de un evento como este. Horas después de la colisión de las dos estrellas de neutrones, DECam descubrió de forma independiente la fuente en el visible e infrarrojo cercano en la galaxia NGC4993, de la que conocemos muy bien su posición en el cielo y su desplazamiento al rojo, lo que ha permitido, entre otras cosas, determinar el ritmo de expansión del universo. Es emocionante ver en directo cómo se coordinan 70 experimentos distintos para poder hacer una medida precisa de uno de los eventos más violentos del universo, una kilonova o short gamma ray burst".

DES comenzó recientemente el quinto y último año de su misión para cartografiar un área muy amplia del cielo austral con un detalle sin precedentes. Los científicos de DES utilizarán estos datos para aprender más sobre el efecto de la energía oscura a lo largo de los últimos ocho mil millones de años de historia del universo, y en este proceso medirán 300 millones de galaxias, 100.000 cúmulos de galaxias y 3000 supernovas.

El grupo DES-Spain, formado por CIEMAT, IEEC/CSIC, IFAE y UAM/IFT, ha contribuido a construir DECam, la cámara con la que se han hecho estas observaciones. En particular diseñó, construyó y validó la electrónica, y ha puesto en marcha el sistema de guiado (entre otras contribuciones). También ha dado soporte al programa de seguimiento óptico de las ondas gravitacionales, participa en el análisis científico y en las publicaciones asociadas a este descubrimiento y es uno de los socios fundadores de la colaboración DES, con financiación del MINECO, IEEC, CSIC y Generalitat de Cataluña.

Añadir nuevo comentario

El contenido de este campo se mantiene privado y no se mostrará públicamente.
Para el envío de comentarios, Ud. deberá rellenar todos los campos solicitados. Así mismo, le informamos que su nombre aparecerá publicado junto con su comentario, por lo que en caso que no quiera que se publique, le sugerimos introduzca un alias.

Normas de uso:

  • Las opiniones vertidas serán responsabilidad de su autor y en ningún caso de www.madrimasd.org,
  • No se admitirán comentarios contrarios a las leyes españolas o buen uso.
  • El administrador podrá eliminar comentarios no apropiados, intentando respetar siempre el derecho a la libertad de expresión.
CAPTCHA
Enter the characters shown in the image.
Esta pregunta es para probar si usted es un visitante humano o no y para evitar envíos automáticos de spam.