Diagrama de la punta de un microscopio térmico empleado para llevar a cabo las medidas del trabajo. /IFIMAC-UAM
Fecha
Fuente
UAM - mi+d

Emisión térmica a distancias atómicas

Un equipo internacional de científicos, entre los que se encuentran físicos de la <a href="https://www.uam.es/uam/inicio?language=es" target="_blank" title="Universidad Autónoma de Madrid" alt="Universidad Autónoma de Madrid">Universidad Autónoma de Madrid</a> (UAM), ha realizado un estudio para mejorar la comprensión de la radiación térmica en la nanoescala. Sus conclusiones son fundamentales para el desarrollo de nuevas aplicaciones tecnológicas que hagan uso de la radiación térmica.

La nanotecnología es la disciplina que estudia y analiza las propiedades que tiene la materia en la nanoescala. Algunas de estas propiedades están muy bien caracterizadas, como la conducción eléctrica en sistemas nanoscópicos (formados incluso por sólo unos pocos átomos). Sin embargo, aunque se conoce que el fenómeno tiene un origen electromagnético, todavía no se ha medido con exactitud la cantidad de calor que intercambian dos objetos cuando se acercan a distancias nanométricas.

Hasta hace poco, no era posible medir experimentalmente este fenómeno ni tampoco estudiarlo computacionalmente en geometrías complejas, ya que no existían las herramientas necesarias para hacerlo.

En los últimos años, distintos grupos han realizado los primeros estudios experimentales sobre la emisión de calor en este régimen, obteniendo resultados contradictorios. De hecho, algunos investigadores han medido una emisión térmica entre dos superficies de oro que es hasta mil veces mayor que la predicha por la teoría básica del electromagnetismo. Por tanto, dentro de la disciplina es fundamental llevar a cabo nuevos trabajos que solucionen esta discrepancia y mejoren la comprensión de este fenómeno.  

Ahora, un equipo internacional, formado por físicos de la Universidad Autónoma de Madrid (UAM) y la Universidad de Michigan, ha llevado a cabo un estudio sobre la transferencia radiativa (electromagnética) de calor en la escala subnanométrica. Concretamente, han logrado medir la transferencia de calor entre una punta STM de oro y un sustrato del mismo material cuando la separación entre ambos era desde unos pocos Ångström hasta 5 nanómetros.

Diagrama de la punta de un microscopio térmico empleado para llevar a cabo las medidas del trabajo. /IFIMAC-UAM
Diagrama de la punta de un microscopio térmico empleado para llevar a cabo las medidas del trabajo. /IFIMAC-UAM

Los resultados, publicados en Nature Communications, muestran que, cuando se limpian sistemáticamente las superficies de oro, la emisión térmica pasa de ser extremadamente alta a tomar valores muy bajos, compatibles con los obtenidos mediante cálculos numéricos realizados en el marco de la teoría del electromagnetismo.

"El estudio sugiere por tanto que la transferencia extraordinaria encontrada en experimentos anteriores se debe a la presencia de contaminantes entre la punta y la muestra. Estas partículas podrían proporcionar un canal de conducción térmica que diera lugar a las señales tan altas medidas en trabajos anteriores", señalan los investigadores.

Estas conclusiones son fundamentales para el desarrollo de nuevas técnicas capaces de medir la emisión térmica en escalas nanométricas. Además, el trabajo sienta las bases para el desarrollo de nuevas tecnologías basadas en la radiación térmica en la nanoescala, como el grabado magnético asistido por calor o la creación de células termo-fotovoltaicas que presenten mayor eficiencia.

Además de investigadores estadounidenses, el estudio lo firman los físicos Víctor Fernández-Hurtado, Johannes Feist, Francisco J. García-Vidal y Juan Carlos Cuevas, del Centro de Investigación de Física de la Materia Condensada (IFIMAC) de la UAM.

Referencia bibliográfica:

L. Cui, W. Jeong, V. Fernández-Hurtado, J. Feist, F.J. García-Vidal, J.C. Cuevas, E. Meyhofer, and P. Reddy. Study of Radiative Heat Transfer in Ångström and Nanometre Sized Gaps. Nature Communications 8, 14479 (2017). DOI: 10.1038/NCOMMS14479

Añadir nuevo comentario

El contenido de este campo se mantiene privado y no se mostrará públicamente.
Para el envío de comentarios, Ud. deberá rellenar todos los campos solicitados. Así mismo, le informamos que su nombre aparecerá publicado junto con su comentario, por lo que en caso que no quiera que se publique, le sugerimos introduzca un alias.

Normas de uso:

  • Las opiniones vertidas serán responsabilidad de su autor y en ningún caso de www.madrimasd.org,
  • No se admitirán comentarios contrarios a las leyes españolas o buen uso.
  • El administrador podrá eliminar comentarios no apropiados, intentando respetar siempre el derecho a la libertad de expresión.
CAPTCHA
Enter the characters shown in the image.
Esta pregunta es para probar si usted es un visitante humano o no y para evitar envíos automáticos de spam.