Posts etiquetados con ‘supercomputador’

Asalto chino a la supercomputación: 2ª parte

Lo de que “segundas partes nunca fueron buenas” seguro que a más de uno le suena. Pero a la comunidad de las altas prestaciones en China le está encantando. Sunway TaihuLight es el supercomputador más potente del mundo en la cada vez más polémica métrica LINPACK. Con 93 petaFLOPS, triplica el rendimiento del que queda en segundo puesto, el también chino Tianhe-2, que equipaba procesadores Intel. La gran novedad, además del asalto al puesto 1 de un nuevo sistema, es que Sunway TaihuLight es 100% de fabricación china, ni Intel, ni IBM, ni NVIDIA, ni AMD,…

Justo un post más abajo comentábamos hace casi un año que China revolucionaba el ranking de la supercomputación copando el primer puesto durante 3 años completos desde su entrada en el Top#1. Hablábamos de que las instalaciones chinas se habían triplicado en poco tiempo. Pero lo que nadie había advertido con antelación es que en Junio 2016, no sólo el Top#1 seguiría siendo de una instalación china, sino que su fabricación sería completamente china (algo insólito) y que dejaría en segundo lugar, y por mucho, al que había sido dueño del pódium durante 3 años, Tianhe-2. Y no solo en rendimiento, que alguien podría pensar que “sólo” hay que meter más procesadores, sino que también es energéticamente más eficiente, ¡el doble!

Sunway TaihuLight posee más de 10 millones de núcleos de procesamiento (casi igual que la máquina desde donde nos lees, ¿verdad?) y consume algo más de 15 millones de vatios (si pensamos en un equipo de sobremesa de 200 vatios serían como 75.000 ordenadores). Esto le hace ser el tercer sistema en la lista de los Green500, es decir, los más ecológicos, y sin duda el 1º de las mayores instalaciones con un ratio de más de 6000 MFLOPS por vatio consumido (6 billones de operaciones en coma flotante por segundo y vatio consumido). Todos los detalles del sistema vienen descritos en el documento hecho público por el investigador de la Universidad de Tennessee, Jack Dongarra. Los medios han tomado buena nota de ello desde que se conoció el ranking el pasado Junio, y hace poco incluso en medios generalistas de la prensa española.

El Departamento de Energía (DoE) estadounidense tiene proyectados desde hace más de un año la creación de 2 supercomputadores con 5-10 veces más potencia que Tianhe-2, y que estarían en funcionamiento en 2017, pero que ya no parecerían sacar tanta ventaja al Top#1 de origen chino. Por nuestra parte, España mantiene en lista una única instalación, el Mare Nostrum, en el puesto #106 y perdiendo ya al Teide HPC que estuvo en el #373 en noviembre de 2015. Si tienes más curiosidad aquí tienes toda la lista del pasado junio: https://www.top500.org/lists/2016/06/

Etiquetas: , , ,
Categorias: General

Semana Grande de la Supercomputación: Top500 y premios NVIDIA a centros educativos y de investigación

Adelantábamos en el último post de las previsiones de supercomputación que Noviembre tenía una de las fiestas bianuales de la supercomputación, la del Top500. Así ha sido, pero aún hay más: se han anunciado los nuevos NVIDIA CUDA Teaching/Research Centers con 3 incorporaciones nacionales, la Universidad de Valladolid, la Universidad de Sevilla y la Universidad Rey Juan Carlos.

Celebrándose la Supercomputing Conference 2014 en Nueva Orleans, EEUU, se anunció el pasado martes el ranking de noviembre del Top500. Por cuarta vez consecutiva, Tianhe-2 mantuvo el liderazgo (2 años completos, con las 4 actualizaciones correspondientes de las que hemos dado cuenta por estas líneas). Estados Unidos bajó en 2 instalaciones de su lista en el Top500 (llegando a 231 instalaciones y siendo líder en número de supercomputadores del ranking, casi la mitad de todos) y las europeas subieron en 14 hasta 130. A finales de la semana pasada se anunciaba a bombo y platillo la ayuda económica que NVIDIA e IBM recibirían para hacer posible en el plazo de 3 años dos supercomputadores de entre 2-10 veces más potente que el actual #1. Para ello, se valdrían de procesadores PowerPC9 y aceleradores NVIDIA Tesla k80 de futura generación, basados en la familia Volta, nombre dedicado al físico italiano Alessandro Volta, inventor de la batería, por la extremada eficiencia energética de dicha familia. IBM ya tiene grandísima experiencia en el diseño de estos supercomputadores, no tanto NVIDIA a pesar de que su tecnología CUDA esté presente en 2 de las 10 instalaciones más potentes del citado ranking.

NVIDIA también anunció sus nuevos CUDA Teaching Centers (CTC) y CUDA Research Centers (CRC), galardones a los centros que mantienen en sus planes docentes o investigaciones multidisciplinares materia ligada con la tecnología NVIDIA CUDA. Nos complace anunciar que entre sus nuevos CTCs  tenemos a la Universidad de Valladolid y a la madrileña Universidad Rey Juan Carlos (la que acoge nuestro día a día), por nuestro afán de atraer nueva tecnología a las aulas de las titulaciones de la Escuela Técnica Superior de Ingeniería Informática. Así, Madrid tiene 3 centros (UAM, UPM y URJC) de los 10 de toda España. Este galardón conlleva una donación de material de última generación para su uso en las clases y talleres de las titulaciones que así lo requieran o seminarios a la comunidad científica del centro, cuyos investigadores implicados se comprometen a impartir. También es importante citar la entrada de la Universidad de Sevilla como CRC haciendo 6 centros españoles.

NVIDIA CUDA es una tecnología de cómputo paralelo que aprovecha la gran potencia de cálculo de las tarjetas gráficas (en realidad de su procesador, GPU, de unidad de procesamiento gráfico) para acelerar la ejecución de aplicaciones científicas. Surge como forma de simplificar la programación de estos procesadores especiales, al igual que existen lenguajes de programación (C, Pascal, Fortran, Java,…) para los tradicionales procesadores centrales (CPUs, de unidades de procesamiento centrales), en los que siempre se han ejecutado las aplicaciones. En determinados casos, en los que la gran independencia de los datos a procesar y la cantidad de ellos son enormes, la potencia de las GPUs puede superar con creces a la de la CPU, además de ser energéticamente más eficientes por estrategias de diseño. NVIDIA CUDA surgió en 2007 gracias al increíble éxito que tuvieron los primeros programas que, haciendo uso de la potencia del procesador gráfico, mejoraban el rendimiento y se volvían más rápidos. Algunas de las nociones para entender este éxito lo pusimos por este blog hace unos años. Actualmente, esta tecnología está soportada por toda la gama de procesadores gráficos de NVIDIA, desde sus tarjetas gráficas más domésticas de apenas unas decenas de euros, hasta sus aceleradores de supercomputación más potentes de varios miles.

 

Etiquetas: , , , , , , , ,

“La caída de los titanes”

Que la tecnología va más rápido que su uso es un hecho casi indiscutible, apenas hemos entendido un dispositivo cuando toca renovarlo. En el campo de la supercomputación también ocurre, y ejemplos recientes de ello hemos tenido en los últimos años. Hoy tratamos un ejemplo en el post de “la caída de los titanes”, recordando la famosa obra de Cornelis van Haarlem, el supercomputador de moda en el Top500, Titan, del que hablamos el pasado octubre, y el último procesador gráfico de NVIDIA, el Geforce GTX Titan, basado en la tecnología Kepler con importantes mejoras para la supercomputación de consumo (o no tan de consumo).

El procesador Cell se desarrolló gracias a la alianza denominada STI de Sony, Toshiba e IBM y sus primeros demostradores datan del año 2001. IBM diseñaba el procesador, Toshiba fabricaba y ofrecía un campo de aplicación en electrodomésticos (como su CellTV de 2010) y Sony garantizaba el desarrollo de aplicaciones, videojuegos y demás expectativas para su Playstation 3, que se lanzó en 2006, y que fue el producto comercial estrella del Cell Processor. El procesador Cell tuvo un arranque muy importante, algunas empresas, como Mercury Computer Systems, basaban sus productos en dicho procesador para campos muy productivos como la imagen médica, inspección industrial, tecnología aerospacial o la supercomputación, pero todo esto tocó techo mediático. El procesador era muy complejo de programar y de sacar partido, y este hecho retrasó en gran medida los grandes lanzamientos para la videoconsola de Sony. En 2007 Sony abandonaba el barco, vendiendo participaciones a Toshiba, que posteriormente recuperaría. Sin embargo, la inminente Playstation 4 parece que estará basada en la arquitectura x86 más tradicional (en este caso de la mano de AMD), la forma en la que otras videoconsolas, como Xbox360, ganaba la carrera en los lanzamientos de novedades.

A la par, el supercomputador Roadrunner fue el #1 del ranking mundial Top500 en Junio de 2008 y hasta noviembre de 2009. Estaba basado precisamente en la tecnología Cell, e incluso en la actualidad se mantenía en la lista del Top500 en una destacada posición (#22), pero sus últimas noticias son que se desmontará. Cayó un titán.

Otros grandes anuncios también tuvieron sus fracasos, como el proyecto Larrabee de Intel (del que hablamos en diciembre de 2009) pero que pudieron reconvertirlo a coprocesador de altas prestaciones en el Intel Xeon Phi que citamos hace escasos meses.Veremos con el tiempo qué pasa, y si mantiene buenos puestos en el escaparate del Top500 como para convencer en otras áreas.

PD: Por cierto, del Cell TV de Toshiba nunca más se supo en occidente.

Enlaces sobre la noticia:

Ranking Top500: www.top500.org

Etiquetas: , , , , , , ,
Categorias: General, Hardware

La nueva apuesta en supercomputación: Intel Xeon Phi

El Big Data está de moda. Expectantes estábamos algunos con la prometida tecnología MIC (Many Integrated Core) de Intel. Años de espera, promesas, nombres alternativos (como Knights Corner) y especulación (en su acepción de prestar atención detenidamente) ha dado por fin con el producto, el Intel Xeon Phi Coprocessor, orientado al procesamiento masivo de datos. El famoso fabricante de procesadores de propósito general ha anunciado que a partir de este momento se podrán adquirir equipos de cómputo paralelo masivo manteniendo un modelo de programación parejo al que se tiene en una plataforma de cómputo tradicional, esto es, una CPU y un entorno de programación de propósito general (lenguaje de alto nivel y su respectivo compilador). Las primeras unidades del Xeon Phi Coprocessor se vislumbran como dispositivos externos energéticamente eficientes basados en la conocida tecnología x86, que ofrecen 1TFLOPS de poder computacional en doble precisión, conectables a nuestros ordenadores a través de puertos PCI Express convencionales y cuyos precios rondarían los 2000 euros al cambio. Lo que en el año 97 eran más de 9200 procesadores ahora es un único dispositivo del tamaño de una caja de zapatos (pequeña).

Con este movimiento, Intel da un paso al frente en la carrera de la supercomputación de consumo, que da título a este blog, y que otros fabricantes mencionados en estas líneas ya se habían adelantado (e incluso ganado terreno). Atendiendo a las notas informativas que Intel ha lanzado en la presentación de su Xeon Phi, esta tecnología está absolutamente inspirada en el originario concepto de GPGPU y posteriormente rebautizado como GPU Computing, al que se refiere el uso del hardware gráfico (GPU, Graphics Processing Unit) para realizar costosas tareas de propósito general a modo de coprocesador de la unidad central de procesamiento o CPU (Central Processing Unit). Y no solo el Intel Xeon Phi Coprocessor está inspirado en el concepto de GPGPU, sino que está enfrentado a ello para ofrecer un entorno más amigable para el aprovechamiento de una capacidad de cómputo extra que lo que OpenCL o NVIDIA CUDA ofrece con las GPUs. Y ahí está el verdadero valor de Intel Xeon Phi, su amigabilidad en el ecosistema de la programación, la mayor posibilidad de abrazarlo entre la comunidad de desarrolladores, manteniendo una facilidad de escalado mediante la posibilidad de conectar hasta 8 coprocesadores en un único PC anfitrión.

Pero describamos con palabras más llanas lo que debemos vislumbrar. Intel Xeon Phi Coprocessor es un dispositivo de cómputo que se puede conectar fácilmente a nuestro ordenador de sobremesa, que se programa de modo habitual para que cualquier programador pueda sacarle partido y que ofrece unas cotas de rendimiento para problemas costosos muy superior a las que obtendríamos mediante un computador de sobremesa por muy moderno que fuera. Esto abre la puerta a muchos investigadores que no han podido acogerse a otros modelos de programación por su dificultad o especificidad, como NVIDIA CUDA, lo cual es una noticia que creemos alegrará a la comunidad científica que necesite de computadores para sus pesadas simulaciones.

Como hemos comentado en otros posts (como el último sobre la transición del Jaguar a Titan) muchos supercomputadores cuentan con unidades de cómputo masivo específicas, actualmente basadas en tecnologías heredadas del terreno del GPU Computing como son los dispositivos NVIDIA Tesla. Pues bien, Cray ya anunció que adoptaría la tecnología Intel Phi en sus nuevas integraciones y los primeros supercomputadores con tecnología Intel Xeon Phi no tardaron en aparecer, llegando al puesto #127 del ranking el pasado junio. El pasado lunes 12 de noviembre se publicaron los resultados de la presente convocatoria del ranking Top500 (donde se confirma la previsión de Titan como #1), y los aceleradores Xeon Phi han escalado posiciones hasta el puesto #7, como el caso de Stampede de Texas, que se sitúa por encima del que fuera #1 en noviembre de 2010, el Tianhe-1A. Habrá que ver la próxima convocatoria en Junio cuántos de ellos adoptan esta nueva tecnología, y en qué posición se sitúa el primero basado en Intel Xeon Phi. Muy reñida estará la partida entre los Teslas y los Phis.

PD: por cierto, nuestro apreciado Mare Nostrum queda en el puesto #36

Enlaces sobre la noticia:

Intel Xeon Phi Coprocessor: http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-architecture-for-discovery-presentation.html

Ranking Top500: www.top500.org

Características y análisis del Intel Xeon Phi: http://www.anandtech.com/show/6265/intels-xeon-phi-in-10-petaflops-supercomputer

Grupo de investigación CAPO: www.gavab.etsii.urjc.es/capo

Etiquetas: , , ,
Categorias: General, Hardware

El Jaguar se transforma en Titan

Jaguar, el supercomputador de Oak Ridge National Laboratory que en noviembre de 2009 fue líder mundial del ranking Top500 y que quedó relegado a sexta posición el pasado junio, se reconvierte para luchar por la posición de cabeza a mediados del mes que viene con el nombre de Titan. Jaguar permaneció líder del ranking durante dos convocatorias, noviembre 2009 y junio 2010 (el Top500 es un ranking semestral), pero cedió su puesto en noviembre 2010 a la supremacía china con su Tianhe-1A y de la que dimos buena cuenta por estas línea.

En 2008 Jaguar contenía del orden de 150.000 núcleos de procesamiento y llegó a la segunda posición del ranking. En 2009 ya sufrió un upgrade para escalar a la primera posición, montando una arquitectura Cray XT5 formada por 18688 nodos de 2 CPUs AMD Opteron, cada una de las cuales contaba con 6 cores, y haciendo un total de 224256 núcleos de procesamiento para ofrecer casi 2 Petaflops (2×10^15 operaciones en coma flotante por segundo). La nueva mejora a Titan supone la migración a la arquitectura más reciente Cray XK5 obteniendo un factor x10 en capacidad computacional y llegando a los 20 Petaflops. En una primera fase se sustituían las CPUs de 6 núcleos por unas de 16, pasando a 299008 núcleos de procesamiento. Posteriormente, se incluyeron racks de procesadores gráficos NVIDIA Tesla M2090 de la familia Fermi que terminarán evolucionando a Tesla K20 de la familia Kepler, la más moderna de NVIDIA y que aquí ya presentamos.

La inclusión de procesadores gráficos (GPUs) en los supercomputadores para mejorar las cotas de procesamiento no es nueva, el citado Tiahne-1A ya presumía de ello con sus Tesla M2050 de la familia Fermi en 2011. Por su parte el anterior IBM Roadrunner, líder del ranking de junio de 2008 a noviembre de 2009 (3 convocatorias), incluía una arquitectura basada en procesadores Cell, más conocidos por ser el motor de la videoconsola Sony Playstation3. Sin embargo, la renovada imagen de Jaguar para conseguir el liderato con la inclusión de mayor número de procesadores gráficos ha sido tan espectacular (18688 GPUs, una por nodo, haciendo una arquitectura absolutamente híbrida) que la noticia ya ha aparecido en diferentes medios de información generalista (CNN, BBC, National Geographic). Cabe destacar que esta renovación no se diseña de un día para otro, y que ya estaba prevista desde mediados del año pasado.

Teniendo en cuenta que el consumo energético de Jaguar fue de 7 millones de dólares en 2011 (alrededor de 7MW de consumo), un aspecto quizá más importante que la mejora computacional del x10 que supone Titan respecto a su predecesor, es su eficiencia energética, pues sus procesadores así como las arquitecturas gráficas son más eficientes y ocupando el mismo espacio, así como mejorando un factor x10 su capacidad computacional, no requerirá mucho mayor consumo energético (alrededor de 9 MW). La arquitectura CrayXK5 dará paso en un futuro próximo a una nueva generación XK6 y está previsto que en 2016 Titan vuelva a mejorarse para conseguir otro factor 10 llegando a los 200 Petaflops, camino constante hacia la “Computación Exascala” (de la que ya hablamos en Junio 2011).

Este supercomputador será utilizado de manera abierta por la comunidad científica, para predecir el clima a través de complejos modelos, estudiar nuevos materiales y combustibles, simular procesos nucleares y, en definitiva, buscar nuevas aplicaciones y fuentes de energía para la humanidad.

 

Enlaces de interés sobre la noticia:

Titan: http://www.olcf.ornl.gov/titan/

Top500: http://www.top500.org

Cray: http://www.cray.com

NVIDIA Kepler: http://www.nvidia.com/object/nvidia-kepler.html

Grupo de investigación CAPO: http://www.gavab.es/capo

Etiquetas: , , , , , , , ,
Categorias: General, Hardware

Confirmado, el chino Tianhe-1 es el supercomputador #1 del Top500

La noticia aparecida en diferentes medios (inclusive Notiweb como ya lo comentamos el pasado 3 de noviembre) sobre la previsión de que el #1 del ranking de supercomputadores incluyera procesadores gráficos “de uso común” como elementos de cómputo de altas prestaciones se hace una realidad. El pasado 15 de noviembre Top500 publicaba la lista de los supercomputadores más potentes en la realización de las tareas que se toman como métricas para establecer este ranking. El que fuera el #1, Jaguar, del Departamento de Energía de Estados Unidos, queda relegado al segundo lugar. Quizá interesante es que de los 5 primeros supercomputadores de la lista, 3 de ellos estén basados en estas tecnologías gráficas “de consumo”, desde luego un valor mediático para empresas como NVIDIA, uno de los líderes en la industria de los procesadores gráficos de consumo.

De hecho, a estos elementos de aceleración poco tradicionales, tales como los procesadores de consumo que incluyen algunas videoconsolas, procesadores gráficos, etc. se denominan “aceleradores”. De la lista del Top500, 17 de ellos utilizan GPUs (procesadores gráficos) como aceleradores (1 de ellos procesadores AMD-ATI, el resto NVIDIA) y 6 utilizan multiprocesadores Cell (utilizados por videoconsolas Playstation3). En lo relativo a la procedencia de los supercomputadores, China toma el segundo puesto en visibilidad, por detrás de Estados Unidos (275 de 500, bajando de 282 en Junio), y dejando atrás a Japón, Francia, Alemania y Reino Unido.

Enlaces de interés:

http://top500.org/lists/2010/11/press-release

Etiquetas: , ,
Categorias: General