Posts etiquetados con ‘flavivirus’

Virus Zika: otro arbovirus trotamundos que se globaliza

El virus Zika abre todos los noticiarios desde hace unos días. El 1 de febrero la Organización Mundial de la Salud declaró la alerta de salud pública de importancia internacional por la emergencia de este virus. En realidad el virus Zika no es nuevo, ni mucho menos. Ni siquiera es novedad su expansión por el mundo, pues ya apuntó maneras al alcanzar en 2007 unas islas del Pacífico lejos de su lugar de origen, el África subsahariana. El post que sigue trata de resumir lo que se sabe de este virus a dia de hoy.

 

La pregunta se las traía: “Ebola, chikungunya, …¿cual será el próximo?”. “Zika”, fue mi respuesta. El lugar,  el simposio sobre “Infecciones víricas emergentes” celebrado el pasado 8 de julio durante el 25º Congreso de la Sociedad Española de Microbiología en Logroño. ¿Que hacía yo allí? Fui invitado a hablar sobre vigilancia global de enfermedades emergentes (un resumen puede leerse en este enlace). En aquel entonces el virus Zika ya había llegado a América, donde empezaba a expandirse rápidamente, como ya lo había hecho de forma muy parecida poco tiempo antes el virus chikungunya. Evidentemente no se trata de adivinación: predecir pandemias y emergencias sanitarias es un ejercicio muy, muy arriesgado, por no decir imposible, y los virólogos no somos Nostradamus. De hecho, podía haberme equivocado, y acertar tuvo algo de casualidad, pero también mucho de estar informado y de simple deducción por analogía.

Zika: un poco de historia

El virus Zika fue descrito por primera vez en 1947, en Uganda. Se encontró buscando otro virus bien conocido y virulento: el virus de la fiebre amarilla, del cual ya hablamos en un post anterior. La forma de buscarlo era un método rústico pero eficaz que se sigue usando hoy dia en determinados casos como sistema de vigilancia de enfermedades infecciosas: empleando animales centinela. En este caso, como los primates son los hospedadores naturales del virus de la fiebre amarilla, se utilizaron macacos de la India (mono Rhesus: Macacca mulatta) para este fin. El lugar fue el bosque de Zika, en Uganda. El 18 de abril de 1947 encontraron al macaco rhesus 766 con fiebre alta. El suero de este animal, inoculado en ratones, permitió el aislamiento del virus causante de aquella fiebre, que resultó que no era el de la fiebre amarilla, sino un patógeno diferente, que posteriormente fue denominado virus Zika, como el bosque del que procedía. El trabajo se realizó en el Uganda Virus Research Institute (UVRI) en Entebbe, Uganda.

UVRI 2015

Entrada principal del Uganda Virus Research Institute, en Entebbe, Uganda, lugar donde se realizó el primer aislamiento del virus Zika. Este es un laboratorio histórico para la virología, donde, además del Zika, se aislaron por primera vez virus como el de Crimea-Congo y West Nile, entre otros.
(Fotografía realizada  por el autor en febrero de 2015).

Poco después se aisló el mismo virus de un mosquito de la especie Aedes africanus, recogido en aquel mismo bosque. La presencia de anticuerpos específicos frente al virus en la población humana de la zona indicaba que el Zika podía infectar a la especie humana. Estudios experimentales en ratones y primates demostraron que el mosquito Aedes era el vector que mediaba la transmisión del virus.

Estudios serológicos indicaban que el área de distribución de este virus comprendía prácticamente todo el África tropical y subtropical, además de zonas tropicales de Asia como la India, Malasia, Thailandia, Vietnam, Filipinas e Indonesia. La seroprevalencia (porcentaje de indivíduos que muestran reacción positiva de anticuerpos frente al virus en la población) en algunos casos, como en Nigeria, superaba el 40%, lo que indicaba una situación endémica: la población estaba expuesta al virus de forma intensa y continuada desde hacía mucho tiempo. En esta situación la mayor parte de la población posee defensas naturales frente al virus, adquiridas durante una infección en las primeras etapas de la vida. Es en la infancia cuando el organismo es más vulnerable, y en efecto, los primeros aislamientos del virus a partir de humanos infectados procedían de niños de entre 1 y 3 años de edad, con fiebre como principal (y a menudo único) síntoma registrado, y en todo caso con signos clínicos leves como dolores de cabeza y musculares.

La transmisión del virus Zika por mosquitos lo vincula al cambio global

El virus Zika ha sido aislado de diversas especies de mosquitos, principalmente del género Aedes, incluyendo A. aegypti, que es el principal vector de la fiebre amarilla y el dengue. Estos dos virus tienen en común con Zika no solo que son transmitidos por el mismo tipo de mosquito, y que son patógenos para el hombre, sino también que pertenecen a la misma familia de virus: los flavivirus. De estos virus hemos hablado en anteriores ocasiones (véase por ejemplo, el post del 12 de octubre de 2012 dedicado a los flavivirus emergentes), subrayando la especial tendencia observada en tiempos recientes, de algunos de sus miembros a emerger en diversas regiones del Planeta. De ello no parece ser ajeno el hecho de que estos flavivirus emergentes se transmiten por picadura de mosquitos, y ya se señaló en este blog la especial relación que tiene el calentamiento global con las enfermedades transmitidas por vectores artrópodos (por ejemplo, véase el post del 25 de febrero de 2012).

En definitiva, el virus Zika es el ultimo de una serie de flavivirus transmitidos por picadura de mosquito que han expandido su rango geográfico en tiempos recientes, como West Nile, Usutu, Tembusu, entre otros. De igual modo, otros virus no pertencecientes a este grupo, pero cuyo modo de transmisión, e incluso tipo de vector, comparten con Zika, han precedido a éste en su expansión mundial, notablemente el virus chikungunya, que no es un flavivirus sino un alfavirus de la familia de los togavirus, y al cual hemos dedicado igualmente algunos posts (por ejemplo, el del 16 de diciembre de 2013). Entre estos virus “expansivos” podemos distinguir dos casos: aquellos que necesitan una o varias especies de vertebrados silvestres que actuen como reservorio para sostener su ciclo natural, como por ejemplo, las aves en el caso del virus West Nile, y aquellos como el Zika y el  chikungunya, pero también el virus dengue y el de la fiebre amarilla, que no necesitan un reservorio animal para mantenerse en circulación, sino que el ciclo puede ser mantenido entre los mosquitos Aedes y la especie humana. Esto hace a estos virus especialmente proclives a la expansión territorial allí donde existan vectores competentes y seres humanos que infectar, especialmente en ambientes muy antrópicos (humanizados, urbanos) donde prosperan sus vectores.

Como hemos dicho, Zika y chikungunya emplean para su transmisión vectores comunes pertenecientes al género Aedes. Entre ellos hay especies invasoras como A. aegypti, A, albopictus, éste último popularizado como “mosquito tigre“. Si bien el papel como vector de A. aegyptii está claramente establecido tanto para chikungunya como para Zika, el de A. albopictus lo está para chikungunya pero es menos conocido en el caso de Zika, aunque la evidencia actual apunta a que este vector es competente también para este virus.

Mosquito tigre

Estas dos especies de mosquitos han alcanzado una amplia distribución en el mundo, la cual se ha visto favorecida por fenómenos asociados al cambio global, que es el impacto de la actividad humana sobre la Tierra. Esta es la razón por la que los virus que emplean estos vectores para su tranmisión tienen allanado el camino para su expansión territorial en amplias zonas del planeta, llegando cada vez más a zonas templadas y más alejadas de los trópicos, como puede ser la Europa meridional y el sur de EE.UU. En las imágenes siguientes se representa la distribución geográfica de estos vectores en épocas recientes.

A. albopictus - distribución

Distribución mundial de Aedes albopictus (mosquito tigre) en 2007. En azul: rango nativo; en verde: introducido (Fuente: Wikimedia Commons).

 

Distribución Aedes aegyptii

Rango geográfico del mosquito Aedes aegypti (amarillo) y de uno de los virus que son transmitidos por éste, el virus dengue (naranja). (Fuente: Wikimedia Commons).

Hay que decir que debido a su expansión contínua, estos mapas están ya desfasados. Se sabe ya que, por ejemplo, A. aegypti ha alcanzado el estado de California (EE.UU.) recientemente, y se sospecha de su presencia en países bañados por el mar Negro, es decir, está a las puertas de Europa (donde, por otro lado, su presencia fue común en tiempos pasados, como prueban las epidemias de fiebre amarilla que asolaron los países mediterráneos hasta el siglo XIX). Por su parte, A. albopictus se encuentra distribuido por gran parte de la cuenca mediterránea, incluyendo España, Francia, Italia, Grecia y Balcanes en su lado norte, y se sospecha su presencia en algunos enclaves del norte de África. Así pues, podemos decir que todos estos países tienen potencial para sufrir brotes autóctonos de virus Zika, como ocurrió no hace mucho con virus chikungunya en Italia, en un episodio que ya se relató en otro post.

Si bien la transmisión del virus Zika ocurre generalmente a través de la picadura de mosquito, se han observado formas alternativas de transmisión. Concretamente se ha documentado algún caso de transmisión por contacto, probablemente por vía sexual. En 2008, el investigador norteamericano Brian D. Foy resultó infectado en Senegal durante una estancia para realizar trabajo de campo en aquel país para el CDC. A su regreso a Colorado (EE.UU.) transmitió la enfermedad a su mujer, presumiblemente por contacto sexual, y publicó el caso en un artículo científico, que se puede consultar en este enlace. Otras potenciales vías de transmisión son las transfusiones y los trasplantes, y posiblemente la vía transplacentaria, que como se verá más adelante, podría tener consecuencias sanitarias muy relevantes. Se desconoce la importancia epidemiológica que pueden tener estas formas alternativas de transmisión no dependientes de vector artrópodo.

La peripecia del Zika alrededor del mundo: 2007-2015

Como dijimos antes, el virus Zika apuntaba maneras ya en 2007 cuando alcanzó la isla de Yap, en Oceanía. Esta isla está en medio del Pacífico, en el archipiélago de Micronesia. La forma en que el virus llegó allí es desconocida, pero probablemente fue introducido por un viajero infectado procedente de alguna de las zonas endémicas para este virus. El brote produjo 49 casos confirmados y 59 probables. Los sintomas comunes fueron fiebre, artralgia, erupción cutánea maculopapular y conjuntivitis. Se estimó que el 73% de la población de Yap fue infectada, es decir, que la inmensa mayoría de las infeccciones permanecieron asintomáticas, algo que, por lo demás, es bastante común entre las infecciones causadas por flavivirus. El mosquito responsable de la transmisión principalmente fue la especie local Aedes hensilli.

El virus Zika siguió expandiéndose rápidamente por otras islas del Pacífico, en Oceanía. En 2013 llegó a la Polinesia francesa y a principios de 2014 alcanzó la Isla de Pascua, tras expandirse por otras islas de la región como Nueva Caledonia, Cook, Vanuatu y Solomon. De aqui sabemos, por estudios filogenéticos (análisis de las similitudes de secuencia genética de los virus hallados en cada una de estas regiones) que pasó a Brasil, probablemente en 2014. Aunque se ha especulado que pudo haber sido un viajero infectado que asistió al campeonato mundial de futbol que organizó este país latinoamericano en 2014 el que introdujo el virus en Brasil, lo cierto es que entre los participantes en ese campeonato no había equipos procedentes de las islas afectadas por el Zika. Por el contrario, si hubo representantes de estas islas en un campeonato mundial de remo que organizó también el país carioca en 2014. Sea en el campeonato que sea, el caso es que el Zika empezó a circular en Brasil. gracias a la abundancia en este país de mosquitos eficaces para su transmisión. Pero no fue hasta mayo de 2015 que Brasil diagnosticó los primeros casos de infección por virus Zika en su territorio. El diagnóstico de una enfermedad como la que causa el Zika, por lo general leve, no es fácil, y en este caso además podía confundirse con otros virus que circulan en la zona, como dengue, chikungunya, etc, de ahi probablemente el retraso en detectarlo. El virus mientras se había extendido y la epidemia pronto desbordó sus fronteras. Para octubre-noviembre de aquel año alcanzó a Colombia, El Salvador, Guayana francesa, Guatemala, Honduras, México, Panamá, Paraguay, Surinam y Venezuela, y en diciembre alcanzó el archipiélago de Cabo Verde, en el océano Atlántico, frente a las costas de África Occidental, lo que prácticamente supone regresar a su “cuna” africana tras dar la vuelta al mundo.

Mapa de la distribución mundial de virus Zika hasta diciembre de 2015.

Mapa de la distribución mundial de virus Zika hasta diciembre de 2015 (fuente: Centers for Disease Control and Prevention, CDC)

La “alerta de salud pública de importancia internacional” de la OMS

Los lectores se preguntarán ¿y cómo es que, siendo un virus que produce una enfermedad leve, el comité de emergencia de la OMS ha lanzado una “alerta de salud pública de importancia internacional” sobre el Zika, si no lo hizo con otras epidemias igual de expansivas pero probablemente más virulentas como la del chikungunya? La razón principal, según la OMS, radica en  la aparición en Brasil de conglomerados (“clústers”)  de casos de malformaciones neonatales y problemas neurológicos (síndrome de Guillain-Barré) de forma concomitante al progreso de la epidemia de Zika en este país. La OMS, a falta de confirmación de la asociación causal entre estas complicaciones graves y la infección por Zika, y en ausencia de una explicación convincente para los problemas observados, ha decidido hacer esa declaración de alerta, aún reconociendo que existe un alto nivel de incertidumbre en torno a las consecuencias potencialmente graves de la infección por Zika. La OMS sostiene que, a pesar de la incertidumbre existente (que es normal en cualquier enfermedad infecciosa emergente), es mejor prevenir, ya que de momento no se puede descartar la duda razonable de que exista asociación de la infección por virus Zika y problemas reproductivos y neurológicos graves. En estas circunstancias, y hasta que se obtengan evidencias más sólidas, es razonable, según la OMS,  actuar con cautela, no correr riesgos ante problemas importantes para la salud pública como los que se sospecha están asociados a la infección por Zika,  y poner más empeño en “la vigilancia de los casos de microcefalia y de síndrome de Guillain-Barré, en particular en las zonas de transmisión conocida del virus del Zika y en las zonas en riesgo de este tipo de transmisión”, recomendando la investigación de forma intensiva de “la etiología de los nuevos conglomerados de casos de microcefalia y trastornos neurológicos para determinar si hay una relación de causalidad con el virus del Zika y otros factores o cofactores”.

Entre las recomendaciones que da la OMS en su declaración sobre la alerta declarada para el  virus Zika, están la mejora de los sistemas de vigilancia y diagnóstico de la enfermedad, la capacitación de los laboratorios involucrados en las pruebas de diagnóstico, mejorar la comunicación de riesgos en los países con transmisión del virus, promover las medidas de control de vectores, poner especial empeño en evitar que las mujeres embarazadas se expongan a la infección, y brindar información sobre el riesgo de padecer la infección a las mujeres en edad fértil en las zonas con circulación activa del virus. A más largo plazo recomienda promover la investigación sobre el desarrollo de vacunas y tratamientos específicos, de los cuales se carece actualmente, y allí donde se perciba riesgo de circulación, los sistemas sanitarios deben estar preparados para un eventual aumento de casos de síndromes neurológicos o malformaciones congénitas. Sin embargo, la declaración no desaconseja viajar a las zonas de riesgo ni restringir el comercio con éstas, aunque si recomienda “brindar información actualizada a los viajeros que se dirijan a zonas con transmisión del virus del Zika con respecto a los posibles riesgos y las medidas apropiadas para reducir la posibilidad de verse expuestos a picaduras de mosquitos“. A las autoridades sanitarias de los países afectados les insta a notificar la información relevante de forma eficaz y rápida.

Conclusión

Aunque un viejo conocido, el virus Zika ha revelado su carácter trotamundos solo en tiempos muy recientes. Este hecho, junto con la sospecha de que su infección pueda causar malformaciones graves en recién nacidos y síndromes neurológicos, ha hecho que la OMS declare la alerta de salud pública de importancia internacional, hasta que se tengan más certezas sobre su vinculación con estos importantes problemas sanitarios. Quedan muchas preguntas por responder, pero quizás la más intrigante de todas es ¿por qué ahora?

En futuros posts seguiremos dando información sobre esta alerta internacional y los progresos que se vayan haciendo en relación con las interesantes cuestiones planteadas por esta expansión mundial del virus Zika.

Enlaces de interés

“Enfermedad por el virus de Zika ” en la web de la Organización Mundial de la Salud (en español). Un buen resumen de la enfermedad http://who.int/mediacentre/factsheets/zika/es/

“Declaración de la OMS sobre la primera reunión del Comité de Emergencia del Reglamento Sanitario Internacional (2005) sobre el virus del Zika y el aumento de los trastornos neurológicos y las malformaciones congénitas” (en español) http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/es/

“The next steps on Zika”. Nota sobre el virus Zika en el número del 2 de febrero de la revista Nature: http://www.nature.com/news/the-next-steps-on-zika-1.19277?WT.ec_id=NATURE-20160204&spMailingID=50617576&spUserID=NjM2MjYxNzExNQS2&spJobID=860373381&spReportId=ODYwMzczMzgxS0

Nota sobre los recursos y novedades sobre el virus Zika puestos a disposición por el ECDC – European Centers for Disease Control and Prevention http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=21369

Artículo sobre la historia del virus Zika fuera de África. Hayes EB. Zika Virus Outside Africa. Emerging Infectious Diseases. 2009;15(9):1347-1350. doi:10.3201/eid1509.090442. http://wwwnc.cdc.gov/eid/article/15/9/09-0442_article
.
Artículo sobre la emergencia del virus Zika desde la Polinesia a Brasil. Musso D. Zika virus transmission from French Polynesia to Brazil [letter]. Emerg Infect Dis. 2015 Oct [date cited]. http://dx.doi.org/10.3201/eid2110.151125
.
Artículo sobre un caso de probable transmisión del virus Zika por contacto sexual. Foy BD, Kobylinski KC, Foy JLC, Blitvich BJ, Travassos da Rosa A, Haddow AD, et al. Probable non–vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis [serial on the Internet]. 2011 May [date cited]. http://dx.doi.org/10.3201/eid1705.101939

 

Etiquetas: , , , , , , , , , , , , , , , , , , ,

“Virus emergentes y cambio global”: cuatro años de blog

Parece que fue ayer cuando salió a la luz el primer post del blog aquel 12 de enero de 2012, pero ya han pasado 4 años, y en este tiempo hemos publicado 71 posts acerca de esos pequeños organismos que son los virus emergentes y todo lo que les rodea. En este tiempo han pasado muchas cosas: muchos virus han “emergido” a la superficie, es decir, a nuestra percepción, afectando al hombre y/o a los animales en diversas formas y con distinte gravedad. Entre los “nuevos-nuevos”, aquéllos que nunca antes se habían descrito, podemos mencionar en este período al virus Schmallenberg, que afecta a rumiantes y que fue descrito por primera vez en Alemania (localidad de Schmallenberg, de ahi el nombre) en 2012. Otro de los descubiertos en este período de vida del blog fue el coronavirus MERS, que se describió por primera vez en Arabia Saudita en 2012, y que es el agente causal de una enfermedad respiratoria grave en el hombre, cuyo reservorio animal parece ser el dromedario. Nos ocupamos así mismo de la emergencia de una nueva variante zoonótica del virus de la influenza (o gripe) aviar, del tipo H7N9, surgida en China en 2013 y que a dia de hoy sigue produciendo brotes de una elevada mortalidad. En China igualmente surgió en 2013 el virus del síndrome de la fiebre grave con trombocitopenia, transmitido por garrapatas, que ha venido produciendo brotes en China y Japón.

Entre los virus conocidos que sufren cambios en sus características básicas que afectan aspectos esenciales de su ciclo biológico, como su rango de hospedador o su transmisibilidad, o bien afectan a su extensión geográfica, hemos hablado del ya muy extendido virus Chikungunya, transmitido por mosquitos del género Aedes, y que tras salir de África, de donde es originario, ha invadido extensos territorios bañados por el Oceano Índico desde 2005, y más recientemente, América, desde 2013 en que se detectó por primera vez en el Caribe, extendiéndose rápidamente por los territorios tropicales y subtropicales de este continente, y produciendo millones de infecciones, de las cuales más de un millón de casos clínicos han sido diagnosticados en humanos, caracterizados por fiebre alta, dolor en las articulaciones, dolor de cabeza y muscular. Aunque la infección por este virus rara vez es letal, en ocasiones el dolor en las articulaciones puede durar largo tiempo (meses o años),  llegando a cronificarse en ciertos casos, resultando en causa de discapacidad para algunas personas.

La expansíón geográfica  reciente de otros virus conocidos, como el virus West Nile (o “Nilo Occidental”) y otros flavivirus, ha sido comentada también en  este blog, pero sin duda, la emergencia sanitaria más “sonada” de los ultimos tiempos fue la del virus Ebola, de la que también se ocupó el blog en su día, dedicandole 5 posts entre abril y diciembre de 2014 (ver post del 19 de diciembre y los post anteriores enlazados al final de éste), tratando de dar información sensata y alejada del alarmismo en la peor epidemia por este virus ocurrida hasta ahora, que aún hoy se encuentra dando los que, esperemos, sean sus últimos coletazos en África Occidental.

La epidemia de Ébola en África Occidental, y sobre todo, su expansión por primera vez fuera del continente africano en forma de casos aislados con transmisión limitada en Europa (España fue el primer país no africano con un caso de transmisión autóctona de virus ebola) y Norteamérica, avivó el interés por un tema ciertamente desconocido para el gran público como es la bioseguridad. El blog dedicó varios posts a este tema, presentando las principales instalaciones de alta seguridad biológica en España (véase el último post de esta serie sobre bioseguridad publicado el 19 de diciembre de 2015 y los posts enlazados al final de éste).

En el blog hemos procurado también dar información complementaria sobre el mundo de los virus emergentes, reseñando publicaciones y acontecimientos (congresos, reuniones) destacables en este ámbito. Del mismo modo, hemos tratado otros temas que pueden tener interés para un público ámplio, no necesariamente con formación científica específica. Por esta labor hemos cosechado un premio de la fundación Madri+d de comunicación científica en 2013 por el post: “Huey cocolitzli en el México del siglo XVI: ¿una enfermedad emergente en el pasado?“, y un accésit en la siguiente edición de estos mismos premios, en 2014, por el post: “Cuando dos virus terminan siendo el mismo“, sobre el asunto de los nombres de los virus.

Creo que el recorrido de este blog en estos 4 años de vida ha merecido la pena, porque ha generado un apreciable interés por parte de los lectores, lo que se nota en el número creciente de visitas e interacciones. Como no cabe esperar que los virus dejen de evolucionar, cambiar y emerger en los lugares y momentos más inesperados, este blog seguirá ofreciendo información útil sobre los virus emergentes que puedan dar lugar a alertas sanitarias en los próximos años.

Etiquetas: , , , , , , , , , , , , , , ,
Categorias: General

Cuando dos virus terminan siendo el mismo

Puede que no lo crean, pero en el post que viene a continuación se habla de Crimea, de Samarcanda, de la ruta de la seda, de la 2ª Guerra Mundial, de la Guerra Civil Española, de garrapatas, de focas, del ejercito rojo, de Israel, de la India, del Congo Belga (sin rumberos, esos son del “combo” no del “Congo”), de la Fundación Rockefeller, de perdices, de mosquitos,  de pavos … y todo ello sin apartarnos de nuestro ámbito, el de los virus emergentes ¿que no es posible? Sigan leyendo y verán.

Que el asunto de los nombres de los virus tiene tirón  es algo que noté desde que publiqué en este blog un post titulado El virus “Sin Nombre” y los nombres de los virus, que fue muy bien recibido por los lectores. En aquella ocasión terminé con la promesa de seguir hablando de los nombres de los virus asi:

Nos dejamos quizá para otra ocasión casos igualmente interesantes de problemas en la denominación de los virus. Dos me parecen destacables: por un lado, los virus “sinónimos” (aquellos que han recibido distintos nombres pese a acabar demostrándose que eran el mismo virus), y por otro, las traducciones de los nombres de los virus que toman como denominación un topónimo

En el post de hoy voy a cumplir con la primera parte: hablaré de cuando nos damos cuenta que dos virus son en realidad el mismo, y por tanto, los nombres con que eran conocidos se convierten en “sinónimos“, y en ocasiones, se unifican ambos nombres en uno solo.

Virus para los que Crimea no está tan lejos del Congo

En 1944-45 se produjo un brote de una enfermedad hemorrágica en unos 200 militares soviéticos sirviendo en la península de Crimea, devastada por la 2ª Guerra Mundial. El agente causal de esta enfermedad, que recibió el nombre de “fiebre hemorrágica de Crimea“, no fue identificado hasta mucho más tarde, cuando en 1967 el virólogo soviético Mijail Chumakov logró aislar el virus de un paciente que murió a causa de la enfermedad cerca de Samarcanda, la legendaria ciudad, enclave central de la antigua ruta de la seda entre Europa y Asia.

Mientras tanto, a unos 7.000 kilómetros de allí, ocurría algo que en principio no guardaba relación alguna con el episodio anterior: En 1956, un médico llamado Courtois aisló un virus de un paciente en el Hospital provincial de Stanleyville (hoy Kisangani), en lo que entonces era el Congo Belga, hoy República Democrática del Congo. El virus se envió al Laboratorio de Virus de la Fundación Rockefeller en Nueva York. Esta fundación había puesto en marcha en 1950 un ambicioso programa de investigación sobre virus dañinos para el hombre, montando laboratorios de virología en la India, Sudáfrica, Brasil, Colombia, Trinidad, Egipto y Nigeria, y financiando estudios dirigidos a identificar y clasificar virus  por todo el mundo. Fue en esa época cuando se desarrollaron los métodos “clásicos”, esencialmente inmunológicos, que permitían caracterizar las cepas víricas y compararlas entre sí, estableciéndose los primeros grupos por afinidades serológicas, llamados “serogrupos“. Este era el motivo de que recibieran el virus aislado en el Congo por Courtois. En una primera instancia, al compararlo con los demás virus recogidos en la colección hasta el momento, solo se halló parecido con otro virus procedente de Uganda. Hasta ahí todo normal.

Pero en 1967 Chumakov tuvo la ocurrencia de enviar  aquél virus que había aislado de un paciente con “fiebre hemorrágica de Crimea” al mismo laboratorio de la Fundación Rockefeller, donde cayó en manos del Dr. Jordi Casals. Este extraordinario virólogo de origen español (nació en Gerona en 1911, completó sus estudios de medicina en Barcelona en 1934, pero la Guerra Civil Española le hizo salir del país, como a muchos otros, desarrollando una brillantísima carrera en Estados Unidos). Casals examinó la muestra de Chumakov, la comparó con los demás virus de la colección y…¡sorpresa! resultó ser prácticamente idéntico al virus hallado en el Congo en 1956 por Courtois. Ello condujo a unificar los dos nombres en uno: “virus de la fiebre hemorrágica de Crimea-Congo” (iniciales en inglés: CCHFV). Así fue como dos virus acabaron siendo el mismo. El CCHFV es un virus extremadamente patogénico para el hombre, en el cual causa una grave enfermedad hemorrágica con un elevado indice de mortalidad, que puede llegar a alcanzar el 50% de los casos clínicos. El CCHFV es transmitido por picadura de garrapatas, principalmente de la familia Ixodidae, género Hyalomma.

Garrapata Hyalomma marginatum

Hyalomma marginatum, una de las especies de garrapatas que transmiten el virus de la fiebre de Crimea-Congo (Fuente: Wikimedia Commons)

El CCHFV presenta una distribución geográfica que abarca amplias zonas de África, Asia y Europa, como se puede observar en la siguiente imagen de la web de la Organización Mundial de la Salud.

Distribución geográfica del virus de la fiebre hemorrágica de Crimea-Congo (CCHFV). Fuente: OMS

 

Cada año se registran alrededor de 1.000 casos de infección por CCHFV en Europa de Este, los Balcanes y Turquía, y esta cifra va aumentando en los últimos años, probablemente con el incremento de la presencia de su principal vector, las garrapatas de género Hyalomma. Se trata de un patógeno emergente que causa preocupación en Europa por el alto indice de mortalidad que produce y por no existir vacunas ni tratamientos eficaces, además de que es capaz de contagiarse de persona a persona, y el riesgo de  transmisión entre el personal sanitario al cuidado de los enfermos es elevado si no se toman medidas de bioseguridad específicas. Es precisamente este aspecto de la bioseguridad el que dificulta el progreso en la investigación sobre el CCHFV, pues se trata de un patógeno de nivel 4, es decir,se requieren instalaciones del máximo nivel de biocontención (P4) para manejarlo en condiciones adecuadas de bioseguridad, y esas instalaciones son escasas: Hay 42 instalaciones de este tipo en el mundo. En Europa hay unas 15, casi la mitad están en Alemania. Países como España,  donde no existen instalaciones P4, dependen de la buena voluntad y colaboración con otros países que si cuentan con estas instalaciones en caso de necesitar investigar brotes o emergencias sanitarias producidas por patógenos P4 como el CCHFV. Por razones obvias, sin embargo, sería muy razonable poder contar con este tipo de instalaciones en nuestro país, pues nos permitirían no sólo investigar sobre este tipo de agentes (entre los que se incluyen los virus más patógenos para el hombre, como son los virus ébola, Marburg y lassa, además del propio CCHFV), sino, sobre todo, realizar con la debida independencia las actuaciones necesarias en materia de salud pública en el caso de que producirse alertas sanitarias por estos patógenos en nuestro territorio. Como no tengo espacio para extenderme más sobre este tema aquí, prometo dedicar un futuro post en este blog a la bioseguridad y la biocontención en los laboratorios que manejan agentes infecciosos.

 De porcinos y leones marinos

En 1932 se detectó en una granja de cerdos del Sur de California lo que parecía un brote atípico de fiebre aftosa (una enfermedad de efectos devastadores sobre el ganado de pezuña hendida). Mientras se sucedían los brotes en más granjas porcinas, incluso muy distantes de la primera, se concluyó que el causante no era el virus de la fiebre aftosa, sino un virus distinto, que recibió el nombre del virus del exantema vesicular porcino (VESV por sus iniciales en inglés). Las medidas de control implementadas en aquel entonces, y que no han variado mucho hasta ahora (esencialmente el sacrificio obligatorio de los animales afectados, la desinfección de las granjas afectadas, y la restricción de movimientos de ganado y de productos animales de las zonas afectadas) lograron controlar estos brotes, aunque siguieron produciendose esporádicamente en granjas porcinas de California (llegó a llamarse “la enfermedad de California”). Pero 20 años después hubo un gran brote de exantema vesicular porcino en Nebraska, a unos cuantos miles de kilómetros de California. Las investigaciones efectuadas condujeron a otra granja en Cheyenne, Wyoming, que había alimentado a los animales con desperdicios de un tren procedente de California. La enfermedad se extendió rápidamente hacia el Este. Se declaró emergencia nacional y se establecieron medidas para su erradicación, que rindieron su fruto, ya que el último vestigio de la enfermedad se observó en 1956, y tras un período adicional de 3 años sin ocurrir nuevos brotes, fue declarada erradicada de los Estados Unidos.

En 1972, es decir, trece años después de la “erradicación” del exantema vesicular porcino de los EE.UU., ocurrió un hecho notable e inesperado: en el curso de la investigación de una enfermedad que afectaba a una colonia de leones marinos californianos (Zalophus californianus) de la Isla de San Miguel, del grupo de islas del Canal de California, se aisló un virus, que fue denominado -en un alarde de imaginación, hay que decir- “virus del león marino de San Miguel” (SMSV por sus iniciales en inglés) y que resultó idéntico al causante del exantema vesicular porcino. Se inoculó el SMSV experimentalmente en cerdos comprobándose que causaba una enfermedad indistinguible del exantema vesicular porcino en esta especie animal. Se han producido desde entonces nuevos brotes de esta enfermedad vírica en los leones marinos de California, aislándose el virus SMSV repetidamente. Nunca más se ha aislado el virus a partir de cerdos, pero en los textos de virología todavía se conservan los dos nombres, VESV y SMSV, como miembros de la familia de los calicivirus (virus “con forma de cáliz”). Forman parte de un grupo más numeroso de calicivirus que afectan a mamíferos marinos. Su reservorio natural podrían ser distintas especies de mamíferos marinos, y del salto de una especie a otra podría surgir cierto grado de patogenicidad, puesta de manifiesto en los leones marinos y eventualmente en el cerdo. Es este un caso curioso de virus “emergente” casi literal, desde las profundidades marinas a tierra firme. Los estudios epidemiológicos y moleculares sugieren que hubo varias introducciones distintas (varias “emergencias”) en la especie porcina en California durante las décadas en que esta enfermedad fue activa en aquel territorio.

León Marino californiano. (Fuente: Wikimedia commons).

Bagaza y meningoencefalomielitis de los pavos de Israel

El ultimo de los tres casos de virus “sinónimos” que voy a contar conlleva cierto atrevimiento por mi parte, y me explico: hasta hora he intentado evitar contar cosas de mi propio trabajo en este blog, más que nada porque pienso que no tienen un interés especial, no más que otros muchos trabajos que hacemos a diario los virólogos. Pienso que una tentación muy fuerte que tenemos los que trabajamos investigando y queremos además divulgar la ciencia es acabar “divulgando” nuestro trabajo. Y hay que ser honesto y reconocer que el  interés sesgado que tenemos por nuestro trabajo no tiene por qué estar presente en el público que nos lee. En otras palabras, que podemos acabar aburriendo al más empedernido de nuestros lectores. Sin embargo, voy a hacer una excepción y a contar un caso en primera persona por primera vez aqui, en este blog, porque creo que este caso puede resultar entretenido e ilustra perfectamente el tema de hoy. Espero que me perdonen los lectores el atrevimiento y sobre todo espero que no se aburran mucho

El virus Bagaza (abreviado: BAGV) es un miembro poco conocido de la familia de los flavivirus (que incluye, entre otros, a los virus del dengue, la fiebre amarilla, o el virus West Nile). Fue descrito por primera vez en 1966 en mosquitos de la localidad de Bagaza (de donde toma el nombre, otra vez esa imaginación…) en la República Centroafricana. Desde entonces se ha aislado en distintas ocasiones a partir de mosquitos de diversas localidades del África subsahariana y, curiosamente, de la India. No se conocía si este virus podría afectar a vertebrados, ni se conocía(n) su(s) hospedador(es) natural(es). Esto era así hasta que en 2010 este virus se detectó en perdices y faisanes enfermos en la provincia de Cádiz (si, si, Cádiz, España). En verano de 2010 se habían registrado los primeros casos en España de encefalitis equina por virus West Nile (acompañados por algunos casos humanos), que ocurrieron en Andalucía (sobre todo en Cádiz). Al tiempo se detectaron casos de una enfermedad grave, con una elevada mortalidad, en perdices rojas y faisanes comunes en libertad en la misma provincia, por lo que en seguida se pensó que podrían tener que ver con la circulación del virus West Nile en la zona. Sin embargo, los análisis efectuados en el Laboratorio Central de Veterinaria (LCV) de Algete, del Ministerio de Agricultura, Alimentación y Medio Ambiente, dieron como resultado la identificación de otro flavivirus distinto del esperado West Nile: el virus Bagaza, un virus bastante desconocido, por cierto. Estábamos ante un típico episodio de enfermedad emergente en un nuevo territorio: España, y por ende, Europa. Los parientes más cercanos de este virus se habían detectado en Centroáfrica y en la Índia…

Perdiz roja (arriba) y faisan común (abajo)

El virus fue rápidamente aislado y secuenciado completamente en un trabajo en colaboración entre el grupo del LCV y el nuestro en el CISA (Centro de Investigación en Sanidad Animal, del INIA) lo cual, entre otras cosas, confirmó la relación estrecha que podía haber entre nuestro virus y otro flavivirus muy patógeno en pavos de granja, endémico en Israel, y conocido como virus de la meningoencefelomielitis de los pavos de Israel (abreviado: ITV), en otro alarde de imaginación. Inciso: he dicho “confirmó” la relación, porque ésta ya había sido sugerida en trabajos previos realizados con un número muy limitado de secuencias nucleotídicas parciales disponibles. Esta disponibilidad limitada de secuencias era el principal problema a la hora de asignar una relación entre ambos virus, que se establece por comparación a nivel genético, método que se emplea actualmente para estos fines (recordemos el caso del CCHFV relatado antes, donde se utilizaban métodos serológicos para establecer parecidos/identidades entre virus).

Esa limitada disponibilidad de secuencias tenía arreglo, pero para ello debíamos ponernos en contacto con colegas israelíes que tuvieran acceso a los virus ITV aislados en su país, donde el virus se describió por primera vez a finales de los años 50 del siglo pasado, y la enfermedad que produce es de sobra conocida por los criadores de pavos. En Israel se desarrolló una vacuna que sigue empleándose en la actualidad para proteger a los pavos de la enfermedad. Fuera de Israel, la meningoencefalomielitis de los pavos  solo se ha descrito en otro lugar: Sudáfrica, en los años 80.

Fruto de la colaboración con investigadores del Instituto Veterinario Kimron, de Israel, que nos enviaron las muestras necesarias, pudimos realizar un análisis completo de la secuencia de cinco aislados de ITV israelíes. El resultado no dejaba lugar a dudas: el virus Bagaza era la misma especie vírica que el virus de la meningoencefalomieitis de los pavos de Israel. De nuevo, dos virus considerados hasta entonces diferentes terminaban siendo el mismo. En este caso, que ha sido publicado recientemente como suele hacerse con este tipo de hallazgos (véase el siguiente enlace)  el nombre aún no ha sufrido modificaciones, aunque en la publicación hemos propuesto reunir los dos nombres en uno: virus de la meningoencefalomieitis aviar, pero para cambiar los nombres de los virus hay que seguir un procedimiento que establece el ICTV (Comité Internacional para la Taxonomía de los Virus), y que estamos iniciando, y cuyos pasos previos, los estudios que se han relatado aqui, y que han sido publicados recientemente, ya se han dado.

El asunto de los nombres de los virus puede parecer baladí, pero como se ilustra muy bien en este último ejemplo, tiene una vertiente muy útil, porque se trata de establecer la identidad de los virus. Por ejemplo, ha sido muy útil establecer la identidad existente entre el BAGV y el ITV porque sabiendo que hay una vacuna ya desarrollada para uno de ellos, es evidente que ésta protegerá igualmente frente al otro virus, y que esta situación es más favorable que si no existiera vacuna. También hemos aprendido algo sobre los hospedadores naturales del virus Bagaza: son determinadas especies de aves, en particular fasiánidos (perdices, faisanes, pavos, etc). También hemos completado un poco más el rango geográfico de este virus, que no solo abarca el África Subsahariana y la India, sino también Israel, Sudáfrica y recientemente el Sur de España (aunque hay que decir que de 2010 acá la situación ha ido mejorando. No obstante, se sigue vigilando la zona para detectar el virus o señales de su circulación).

 

Y hasta aquí el largo post de hoy. Anímense y dejen sus comentarios (es gratis).

 

 Bibliografía de interés sobre el tema de este post

Whitehouse, C.A. Crimean-Congo Haemorrhagic fever. Antiviral Research 64 (2004) 145–160. (Revisión sobre la fiebre hemorrágica de Crimea-Congo).

Bankowsli, R.A., Sawyer, J.C. Vesicular exanthema of swine and marine calicivirus infections. In Beran, J.W. (ed.) Handbook of zoonoses (Section B, Viral zoonoses), 2nd ed. CRC Press, Boca Ratón, Florida, 1994. (Historia del virus del exantema vesicular porcino y su relación con el virus del león marino de San Miguel).

Agüero M, Fernández-Pinero J, Buitrago D, Sánchez A, Elizalde M, San Miguel E, Villalba R, Llorente F, Jiménez-Clavero MA.Bagaza virus in partridges and pheasants, Spain, 2010. Emerg Infect Dis. 2011, 17(8):1498-501. doi: 10.3201/eid1708.110077 (Primera descripción del virus Bagaza en España).

Fernández-Pinero J, Davidson I, Elizalde M, Perk S, Khinich Y, Jiménez-Clavero MA. Bagaza virus and Israel turkey meningoencephalomyelitis virus are a single virus species. J Gen Virol. 2014, 95(Pt 4):883-7. doi: 10.1099/vir.0.061465-0. (Estudio sobre la identidad genética de los virus BAGV e ITV).

 

 

 

Etiquetas: , , , , , , , ,
Categorias: Viejos virus

Alejandro Magno y el virus West Nile

En 2003, en pleno apogeo de una grave epidemia de fiebre/encefalitis por virus West Nile (*) en los Estados Unidos, con notable  repercusión en los medios, John S. Marr y Charles H. Calisher publicaron un artículo titulado “Alexander the Great and West Nile virus encephalitis” (1) en la influyente revista “Emerging Infectious Diseases” del no menos prestigioso CDC (Centro de Prevención y Control de Enfermedades) de los EE.UU.

En este artículo, los autores se preguntan: ¿Es posible que Alejandro Magno muriera de una infección aguda por virus West Nile? La pregunta ha quedado de alguna forma fijada como una verdad demostrada, cuando no es así en absoluto. Vamos a analizar qué hay de verdad y qué no en la ya famosa atribución de la muerte de Alejandro Magno al virus West Nile, aunque les adelanto que dudo que al final de este post vayamos a saber más de la causa de la muerte de tan insigne personaje.

¿He dicho insigne? Me he quedado corto. La figura de Alejandro aún refulge en la Historia como el más grande conquistador de la Antigüedad. Sus hazañas seguirán impresionando a las generaciones venideras como lo han hecho a lo largo de los siglos. La peripecia de Alejandro sigue siendo un tema enormemente atractivo. Y si a esto le unimos un virus de nombre exótico, que llegó del otro lado del Océano y se extiende rápidamente causando graves quebrantos, y cuyo nombre evoca al legendario rio Nilo, donde, por cierto, se ubicó la ciudad de Alejandría, fundada por el famoso héroe de la Antigüedad, y en la que fue enterrado…¿que tenemos? Pues un artículo fantástico, que tiene asegurada la atención del público tanto erudito como lego.

Alejandro Magno murió en Babilonia en el año 323 a. C., a la edad de 32 años. En casos como este, la suerte es que hay crónicas que recogen el evento. Plutarco (50-120 d. C.) dejó escrito en su obra “Vidas paralelas” un relato de la vida y muerte de Alejandro, basado en los “Diarios Reales de Alejandro“.  La muerte le sobrevino el 10 de mayo del 323 a. C tras padecer una enfermedad febril durante 2 semanas. Acababa de regresar a Babilonia después de un largo viaje  de conquista por el subcontinente indio.  Veamos lo que Plutarco dice en su relato:

LXXV…habiéndose bañado ya, como lo tenía de costumbre, para irse a acostar, a petición de Medio marchó a su casa a continuar la cena, y habiendo pasado allí en beber el día siguiente, empezó a sentirse con calentura, no al apurar el vaso de Heracles, ni dándole repentinamente un gran dolor en los lomos, como si lo hubieran pasado con una lanza: porque éstas son circunstancias que creyeron algunos deber añadir, inventando este desenlace trágico y patético, como si fuera el de un verdadero drama. Aristobulo dice sencillamente que le dio una fiebre ardiente con delirio, y que teniendo una gran sed bebió vino, de lo que le resultó ponerse frenético y morir en el día 30 del mes Desio.

LXXVI En el diario se hallan así descritos los trámites de la enfermedad: En el día 18 del mes Desio se acostó en el cuarto del baño por estar con calentura. Al día siguiente, después de haberse bañado, se trasladó a su cámara, y lo pasó jugando a las tablas con Medio. Bañóse a la tarde otra vez, sacrificó a los dioses, y habiendo cenado tuvo de nuevo calentura aquella noche. El 20 se bañó e hizo también el acostumbrado sacrificio, y habiéndose acostado en la habitación del baño, se dedicó a oír a Nearco la relación que le hizo de su navegación y del grande Océano. El 21 ejecutó lo mismo que el anterior, y, habiéndose enardecido más, pasó mala noche, y al día siguiente fue violenta la calentura. Trasladósele a la gran pieza del nadadero, donde se puso en cama, y trató con los generales acerca del mando de los regimientos vacantes, para que los proveyeran, haciendo cuidadosa elección. El 24, habiéndose arreciado más la fiebre, hizo sacrificio, llevado al efecto al altar, y de los generales y caudillos mandó que los principales se quedaran en su cámara, y que los comandantes y capitanes durmieran a la parte de afuera. Llevósele al traspalacio, donde el 25 durmió algún rato, pero la fiebre no se remitió. Entraron los generales, y estuvo aquel día sin habla, y también el 26; de cuyas resultas les pareció a los Macedonios que había muerto, y dirigiéndose al palacio gritaban y hacían amenazas a los más favorecidos de Alejandro, hasta que al fin les obligaron a abrirles las puertas, y, abiertas que les fueron, llegaron de uno en uno en ropilla hasta la cama. En aquel mismo día, Pitón y Seleuco, enviados a consultar a Serapis, le preguntaron si llevarían allí a Alejandro; el dios les respondió que lo dejaran donde estaba, y el 28 por la tarde murió”.

Eso es todo lo que sabemos sobre su enfermedad y las circunstancias que la rodearon. ¿Cómo puede ser que a partir de ahí se haya llegado a concluir que el causante de esa fiebre fue el virus West Nile? De hecho, ejercicios de retrodiagnóstico previos al de Marr y Calisher no concluyen tal cosa. Se ha sugerido desde el envenenamiento (poco compatible con fiebre alta sostenida 2 semanas) hasta diversas infecciones como malaria (posiblemente común en Babilonia del s IV a. C., como actualmente es endémica en Iraq). Marr y Calisher descartan malaria, pues al parecer no hay en este caso evidencia de la “típica curva de fiebre por P. falciparum”. Otras patologías infecciosas estimadas como posibles causas de la muerte de Alejandro incluyen la fiebre tifoidea, parasitosis (cercarias), leptospirosis o amebiasis. Los autores del artículo las descartan una a una al echar en falta signos clínicos típicos que no son reflejados por los cronistas. A decir verdad, ni las crónicas ni el historiador Plutarco se detienen demasiado en la enfermedad ni en los síntomas.

Entremos en el ejercicio de Marr y Calisher:  descubren un detalle en el texto de Plutarco en el cual, al parecer, nadie había reparado antes (seguramente ni el televisivo Dr. House lo hubiera hecho mejor). Dice así:

LXXIII. Cuando se acercaba a Babilonia, Nearco, que había vuelto al Éufrates por el gran mar, dijo que le habían hablado algunos Caldeos instándole para que Alejandro no entrara en Babilonia; pero éste no hizo caso, sino que continuó su marcha, y cuando ya tocaba a las murallas vio muchos cuervos que peleaban y se herían unos a otros, de los cuales algunos cayeron donde estaba. Hízosele enseguida denuncia contra Apolodoro, gobernador de Babilonia, de que había hecho sacrificio acerca del mismo Alejandro, de resultas de lo cual envió a llamar al agorero Pitágoras; como éste no negase el hecho, le preguntó sobre la disposición de las víctimas. Díjole que al hígado le faltaba el lóbulo, sobre lo que exclamó Alejandro: “¡Ay, ay! Esta es terrible señal”.

Es de sobra conocida la importancia que daban los antiguos a las aves como portadoras de designios. Los augures eran los encargados de interpretar esos designios, ya fuera observando el comportamiento o escrutando las vísceras. Este oficio nos ha dejado palabras tan curiosas como augurio (proyección sobre el futuro), agorero (persona que no cesa de anunciar males futuros) y agüero (en general, “mal agüero”, mal designio, aún asociado a las aves negras, en particular los cuervos y grajos).  Por esta razón no es extraño que los contemporáneos de Alejandro se fijaran en las aves e interpretaran su presencia, comportamiento, anomalías, etc  como un aviso de sucesos por venir. Hay que explicar que las aves son los hospedadores vertebrados naturales para el virus West Nile (ver post anterior: enlace). También hay que decir que entre las aves, los cuervos tienen mayor relevancia en este caso, pues algunas especies de éstos, en particular los cuervos americanos, son muy susceptibles a la enfermedad causada por infección con virus West Nile, que es a menudo mortal en ellos. Durante la epidemia por virus West Nile en EE.UU., que alcanzó máximos en los años 2002-03 (el artículo de Marr y Calisher es de 2003) era muy común encontrar cuervos y otras aves muertas en zonas con circulación activa del virus (de hecho, las mortalidades de aves se utilizaron como un útil sistema de vigilancia, pues precedían en varias semanas a la aparición de casos humanos). Así pues, cuando Calisher y Marr leyeron el párrafo de Plutarco mencionando a los cuervos, su extraño comportamiento (“se peleaban entre ellos”) y sobre todo, su muerte, no pudieron dejar de relacionar todo aquello con lo que se estaba produciendo a su alrededor: mortalidades masivas de cuervos causadas por un virus del Viejo Mundo, endémico en Oriente Medio desde al menos los años ’50 del s. XX, y que (¿por que no?) podría llevar siglos circulando entre el Tigris y el Eufrates. De todo ello, los autores del artículo concluyen que es muy probable que Alejandro Magno falleciera a causa de una infección aguda por virus West Nile.

A este artículo, que  como se ve, le falta cierto sustento, que los autores no niegan, le siguieron una serie de cartas de respuesta que fueron publicadas unos meses después en la misma revista (2-4). Fundamentalmente tratan de explorar la hipótesis de la infección por virus West Nile como causa de muerte de Alejandro Magno desde puntos de vista muy diversos, poniendo de manifiesto desde la imperfección de las traducciones  de las obras griegas y latinas clásicas que describen la muerte de Alejandro, hasta la falta de consistencia de lo descrito con los verdaderos signos clínicos de la fiebre por virus West Nile o con la época del año en que ocurre el deceso, finales de mayo (los casos de esta enfermedad suelen ocurrir durante el verano), pasando por la excesiva presencia de pájaros en los textos de Plutarco, o la  escasez de información clínica disponible, que deja un campo muy abierto a la especulación.

Pero una de estas cartas (firmada por Galli, Bermini y Zehender) expone un argumento que para mi es inapelable: ¡El virus West Nile aún no existía en el año 323 a. C.!  Según los autores italianos, verdaderos especialistas en evolución de virus, y empleando un análisis (muy básico, por cierto (**)) de estimación del tiempo de divergencia entre los distintos flavivirus (basado en comparación  de secuencias nucleotídicas y estudios filogeográficos), el virus West Nile no habría aparecido en la evolución de los flavivirus (el género al que pertenece) hasta hace unos 1043-1274 años, es decir, entre los años 729 y 961 d. C. Cuando murió Alejandro quedaban aún, según este estudio, entre 11 y 13 siglos para que apareciera el primer ancestro de todos los virus West Nile que actualmente conocemos, y que son genéticamente heterogéneos, abarcando hasta 8 linajes genéticos distintos. Estos linajes siguen evolucionando hoy día, y cuando haya transcurrido suficiente tiempo su evolución dará lugar a otros tantos virus que algún día ya no podrán llamarse West Nile por ser suficientemente distintos, divergentes y singulares, y habrá que ponerles otro nombre, como corresponde a cada nueva especie de virus que se identifica.

En conclusión, los virus evolucionan muy rápido, tanto que las inferencias que hacemos sobre las enfermedades víricas que aquejaron a nuestros antepasados, basándonos en lo que conocemos de las actuales, pueden ser erróneas. Seguramente en la Babilonia del siglo IV a. C. pudo circular un flavivirus ancestral con características y efectos similares al actual virus West Nile, y pudo ser ese virus ancestral, quizá, el que acabó con Alejandro Magno. Pero ¿podemos afirmar que ese virus es el mismo que el actual virus West Nile?

Referencias

1. Marr, J.S. y Calisher, C.H. Alexander the Great andWest NileVirus Encephalitis Emerg Infect Dis. 2003 December; 9(12): 1599–1603. doi: 10.3201/eid0912.030288

2. Cunha, B.A. Alexander the Great andWest NileVirus Encephalitis.  Emerg Infect Dis. 2004 July; 10(7): 1328–1333. doi: 10.3201/eid1007.040039

3. Galli M, Bernini F, Zehender G. Alexander the Great and West Nile virus encephalitis. Emerg Infect Dis. 2004 Jul;10(7):1330-2; author reply 1332-3.

4. Oldach D, Benitez RM, Mackowiak PA. Alexander the Great andWest Nilevirus encephalitis. Emerg Infect Dis. 2004 Jul;10(7):1329-30; author reply 1332-3.

 

NOTAS:

(*) A veces se traduce erróneamente este nombre por virus “Nilo Occidental” u “Oeste del Nilo”.

(**) Esencialmente, los datos de filogeografía y los cálculos sobre la divergencia genética de los distintos aislados del virus West Nile obtenidos por Galli et al en este estudio, que puede considerarse preliminar, han sido confirmados por estudios posteriores más completos (ver May et al (2011). J Virol 85:2964-74: y Zehender et al (2011) Inf Genet Evol 11 (2011) 646–653).

 

Etiquetas: , , , , , , , , , , ,
Categorias: Viejos virus

Fiebre amarilla en Sudán, 2012 ¿la re-emergencia de una enfermedad olvidada?

En los últimos meses ha ocurrido en Darfur, al sur de Sudán, una importante epidemia de fiebre amarilla. Algunos expertos señalan que se trata de la epidemia más importante de esta enfermedad en los últimos 20 años en el mundo. Desde octubre de 2012 se han producido en la zona hasta el momento unos  800 casos de la enfermedad, con 168 fallecimientos.  Con el fin de detener el avance de la enfermedad y proteger a la población más expuesta, en noviembre se inició una campaña de vacunación. Hasta el momento se ha vacunado a más de 3 millones de personas en la zona considerada en riesgo. Se prevé vacunar a 2 millones más en cuanto estén disponibles las dosis de vacuna necesarias, que se espera sea pronto. Con ello se considera que la zona de Darfur quedaría protegida de la enfermedad y se evitaría su avance hacia otras zonas. Debe recordarse que Darfur es una zona en conflicto con 2 millones de refugiados. Al parecer la enfermedad no ha llegado aún a los campos de refugiados, ni a las ciudades, y se ha mantenido en un entorno rural, lo que ha evitado por el momento que las cifras de afectados se disparen. La fiebre amarilla es una enfermedad vírica transmitida por picaduras de mosquitos, que causa una enfermedad grave en el hombre caracterizada por hemorragias, ictericia, y fallo hepático y renal. Existe una vacuna eficaz, pero no hay tratamiento farmacológico. La mortalidad global de esta enfermedad puede variar dependiendo de la virulencia y otros factores, oscilando en los datos históricos entre un 1% y un 17%. La Organización Mundial de la Salud cifra en 200.000 el nº de casos de fiebre amarilla anualmente en todo el mundo.

 

Hembra de mosquito Aedes aegyptii, principal vector de la fiebre amarilla y de otras enfermedades producidas por flavivirus.                                         (Fuente: http://phil.cdc.gov/phil/home.asp ID#: 8932 US Department of Health and Human Services).

El virus de la fiebre amarilla es un miembro de la familia de los flavivirus. Hemos tratado ya de algunos otros miembros de esta familia en post recientes [1][2]).  El de la fiebre amarilla es el virus prototípico, o virus “tipo” de esta familia, además de ser seguramente el más conocido de este grupo, y posiblemente el más importante, al menos históricamente. La ictericia característica de la enfermedad, consecuencia de los altos niveles de bilirrubina causados por el extenso daño hepático producido, dan nombre tanto a la enfermedad como al virus, y éste a la familia taxonómica (“flavi” proviene de “flavus”, amarillo en latín).  El virus probablemente tuvo su origen en África y viajó desde este continente a América, siendo el comercio de esclavos una constante fuente de introducción en el Nuevo Continente. El virus nunca ha sido detectado en Asia ni en Oceanía. Su primera descripción en América data de 1495 en la isla de La Española (República Dominicana-Haití), probablemente introducido por los primeros conquistadores españoles. En los siglos XVIII y XIX se sucedieron epidemias de fiebre amarilla (también conocida como “vómito negro” en aquella época) de gran importancia, tanta que algunos acontecimientos históricos no hubieran seguido el mismo curso sin el concurso de esta terrible enfermedad. Por ejemplo, en 1802 Napoleón envió un ejército de 24.000 soldados a Haití para sofocar las revueltas en la zona, muriendo más de la mitad de fiebre amarilla y haciendo fracasar la campaña militar. La enfermedad viajaba en barco y frecuentemente visitaba las poblaciones con puerto de mar. Cádiz en 1811 sufrió un grave brote de fiebre amarilla, a consecuencia del cual contrajeron la enfermedad 60 diputados de las Cortes de Cádiz, de los que 20 murieron por su causa. En Barcelona hubo una terrible epidemia de fiebre amarilla en 1821, que diezmó su población (una descripción detallada puede consultare en el siguiente enlace). Buenos Aires sufrió epidemias en 1852, 1858 y 1870-71. En la isla de Cuba se conoce la enfermedad desde 1621. En la guerra de los 10 años, o “Primera guerra de Cuba” (1868-1878) murieron por su causa unos 20.000 militares españoles y cerca de 11.000 locales.

Fue en Cuba donde se encontró la clave de la transmisión de esta enfermedad, lo que condujo a su erradicación de la isla en 1909. El médico cubano Carlos Finlay propuso en 1881 que la enfermedad era transmitida por la picadura de un mosquito, concretamente el que hoy día conocemos como Aedes aegyptii (véase la imágen que ilustra este post), realizando numerosas inoculaciones experimentales en humanos para corroborarlo. En principio las autoridades sanitarias norteamericanas (recordemos que tras la guerra de la independencia, la isla quedo bajo protección de los EE.UU. hasta 1902) eran reacias a esta teoría, que en sí era bastante revolucionaria, pues la idea de un “vector biológico” para transmitir una enfermedad infecciosa era algo que estaba empezando a proponerse tímidamente para otras enfermedades como el paludismo, pero aún era poco conocida y menos aceptada por la comunidad científica. Tras perder varios años luchando infructuosamente contra las epidemias de esta enfermedad, en 1899 una nueva comisión médica estadounidense llegó a La Habana, presidida por Walter Reed. Se entrevistaron con Finlay, quien les entregó diversas publicaciones y materiales (entre ellos huevos de mosquitos recogidos por él) con los que podrían comprobar ellos mismos la validez de su teoría. En 1901, tras diversas pruebas experimentales (incluyendo la auto-inoculación de algunos de los investigadores norteamericanos, uno de los cuales -Jessey Lazear- falleció de fiebre amarilla) Walter Reed quedó convencido de la teoría de Finlay, y desde entonces fue su más firme defensor. Tanto que incluso se postuló como el descubridor original de la misma, olvidando o menospreciando el trabajo de Finlay por “poco riguroso”. En EE.UU. se elevó injustamente a la categoría de “descubridor de la causa de la fiebre amarilla” a Reed, quien murió poco después a causa de una peritonitis, en 1902. Gracias a los descubrimientos de Finlay, posteriormente confirmados por el equipo de Reed, las autoridades sanitarias de la isla pudieron luchar eficazmente contra la fiebre amarilla mediante tratamientos y prácticas que eliminaban los lugares de cría del mosquito. De esta forma se erradicó esta enfermedad de Cuba, ausente de la isla desde 1905, fecha de la última epidemia, erradicada en 3 meses.

La fiebre amarilla afortunadamente ya no tiene la importancia que tuvo en el pasado, gracias a que se dispone de vacunas eficaces que han ido reduciendo su incidencia a lo largo del siglo XX. Sin embargo sigue siendo un problema sanitario en algunos países, sobre todo en áreas donde existen bosques tropicales húmedos que representan una hábitat propicio para el establecimiento de ciclos endémicos del virus. Los brotes recientes se han localizado en países del África Subsahariana (Sudán, Kenya, Uganda, Congo, Camerún, Costa de Marfil y otros) donde continúa la circulación del virus y con cierta frecuencia se emprenden campañas de vacunación. En América del Sur (Brasil), ha habido brotes ocasionales recientes. Por este motivo se recomienda la vacunación contra la fiebre amarilla a los que viajan a estas zonas.

El episodio de Darfur es preocupante por cuanto es el mayor brote de fiebre amarilla registrado en los últimos 20 años. Si este brote es fruto de un recrudecimiento momentáneo debido a factores circunstanciales locales (como lluvias más abundantes, por ejemplo), o bien se trata de un indicio del resurgimiento de esta enfermedad a nivel más global por diversos motivos de más largo recorrido, como puede ser el cambio climático y/o factores socio-económicos, es algo que solo el tiempo dirá.

 

Referencias:

[1] El avance de los flavivirus emergentes y reemergentes  (publicado el 12 de octubre de 2012 en este blog)

[2] Virus West Nile (Nilo occidental) en Europa y EE.UU: ¿qué ha pasado en 2012? (publicado el 26 de octubre de 2012 en este blog)

 

__________________

El autor de este blog desea a sus lectores una muy FELIZ NAVIDAD.

Etiquetas: , , , , , , , , , ,
Categorias: Viejos virus

El avance de los flavivirus emergentes y reemergentes

 

En este post analizaremos una situación un tanto inusual, por cuanto atañe a unos virus que pertenecen a un grupo concreto, y que en los últimos tiempos vienen protagonizando episodios de emergencia vírica destacables.  Hablaremos de virus de nombres exóticos como West Nile, Usutu, Baiyangdian,  Tembusu…, todos ellos flavivirus emergentes, transmitidos por picaduras de mosquitos, y que tienen como reservorios diferentes especies de aves silvestres (es decir, son “eporníticos“).

Dentro de la familia taxonómica Flaviviridae, género Flavivirus se hallan clasificados una serie de virus patógenos para el hombre y los animales, que han causado históricamente graves epidemias. El más conocido, y posiblemente más importante es  el virus de la fiebre amarilla, que es el “virus tipo” (virus que reúne las características típicas del grupo taxonómico) y que da nombre a la familia (“flavi” viene de “flavus“, amarillo en latín). Pero hoy no toca hablar de la fiebre amarilla (lo dejamos para otro post), sino de otras enfermedades producidas por flavivirus que han cobrado una relevancia inusitada en los últimos años. Todas ellas tienen varias características comunes: 1) son transmitidas principalmente por picaduras de mosquitos; 2) las aves silvestres son sus reservorios naturales; 3) se mantienen en la naturaleza en un ciclo “rural” o “selvático” en el que el virus pasa de mosquito a ave y viceversa, siendo difícil percibir su presencia; 4) en determinadas ocasiones, el ciclo rural se desborda, produciendo brotes epidémicos en el hombre  y/o en los animales domésticos, causando a menudo encefalitis y otras afecciones neurológicas; 5) su rango geográfico ha aumentado en los últimos años, afectando a regiones donde, o bien nunca antes se habían descrito (en las que por tanto se consideran “emergentes“) o hacía mucho tiempo que no se detectaban (es decir, son “re-emergentes“); 6) en general la expansión ocurre desde zonas tropicales y subtropicales hacia las zonas templadas del Planeta. Las razones de esta expansión son aún inciertas, pero a nadie se le escapa que el fenómeno del calentamiento global y los cambios climáticos asociados pueden ser factores determinantes en este proceso, si bien otros factores relacionados con el fenómeno de la globalización (aumento del comercio y del transporte a nivel mundial, aumento de la producción de alimentos para una población creciente, etc) pueden estar contribuyendo en este proceso [1].

En la siguiente tabla se resumen los principales flavivirus eporníticos causantes de arbovirosis emergentes en la actualidad. Pertenecen a dos grupos antigénicos (“serocomplejos”) conocidos como “serocomplejo de la encefalitis japonesa“, al que pertenecen el virus que da nombre al serogrupo (virus de la encefalitis japonesa), el virus West Nile, el virus Usutu, el virus de la encefalitis de Saint Louis y el virus de la fiebre del Valle de Murray, por un lado, y por otro el “serocomplejo Ntaya” al que pertenecen (además del virus Ntaya, que da nombre al grupo) el virus Bagaza y el virus Tembusu. En la tabla aparecen los sinónimos con que algunos de estos virus también se conocen, y su distribución geográfica por continentes, señalándose con un asterisco aquellos continentes donde se han registrado episodios recientes de emergencia de alguno de estos virus.

Flavivirus eporníticos emergentes en los distintos continentes (Af: África; Am: América; As: Asia; EU, Europa; Oc: Oceanía. El asterisco (*) señala aquellos lugares donde el virus está emergiendo en tiempos recientes

 

A continuación se expone la situación actual en torno a alguno de los flavivirus emergentes más importantes. La siguiente figura muestra en un mapa la situación mundial en relación con estos virus. Las abreviaturas son las mismas que en la tabla anterior.

Se señala la distribución geográfica de los cuatro flavivirus más importantes del serocomplejo de la encefalitis japonesa (JEV, WNV, SLEV y MVEV) Fuente: Mackenzie, J.S. et al (2004) Nat Medicine, 10(12):s98-s109.

 

West Nile

Entre los flavivirus que han ampliado recientemente su rango geográfico, destaca el virus West Nile (o WNV por sus iniciales en inglés), cuyo nombre suele traducirse al español como “Nilo Occidental”, “Oeste del Nilo”  o “Nilo” a secas (hay que decir que ninguna de estas traducciones es correcta, pero sin embargo están muy extendidas [2][3][4]). Este virus afecta a un amplio rango de especies de vertebrados, entre ellas el hombre. El 80% de las personas que resultan infectadas  por WNV no manifiestan ningún síntoma ni afección clínica. En la mayor parte del 20% restante se produce una enfermedad leve conocida como “fiebre por WNV” que en la mayoría de los casos se limita a signos inespecíficos  como fiebre, mialgia y fatiga, a veces acompañados de exantema, vómitos, diarreas y linfadenopatía, que se resuelven sin complicaciones. Sin embargo, en unos pocos casos (se estima que uno de cada 150 casos clínicos) se desarrolla una enfermedad más grave (“enfermedad neuroinvasiva por WNV“), que afecta al sistema nervioso central, y que se manifiesta en forma de encefalitis, meningitis o parálisis. Entre el 4 y el 14% de los casos de enfermedad neuroinvasiva son mortales [5]. El virus afecta también a otros vertebrados,  principalmente a caballos, en los que produce una enfermedad neurológica grave en un 10% de los casos clínicos, letal en 1/3 de los casos graves. Ni los equinos ni los humanos transmiten la enfermedad, al menos de forma natural; son lo que se conoce epidemiológicamente como “hospedadores de fondo de saco” (u “hospedadores terminales”).

Expliquemos un poco esto de los hospedadores (vertebrados) y los vectores (mosquitos): Para que el virus se transmita es necesario que un mosquito adquiera la infección mediante la picadura a un  ”hospedador competente” (reservorio) que en este caso es un ave silvestre (hay muchas especies, algunas son buenos reservorios y otras no). Las hembras grávidas de mosquito necesitan chupar sangre de vertebrados para desarrollar sus huevos. Si la sangre del vertebrado contiene suficiente virus, el mosquito adquirirá la infección. Si el mosquito es a su vez un “vector competente” para la transmisión (no todas las especies lo son), entonces el virus se multiplicará en su organismo alcanzando en sus glándulas salivales el número suficiente como para que en la siguiente picadura sea inoculado con éxito a un nuevo hospedador vertebrado. Así continúa el ciclo. Los hospedadores “de fondo de saco” (caballos, humanos, y en general los mamíferos) no son “competentes” para la transmisión (el virus no alcanza niveles suficientes en su sangre como para que el virus sea transmitido a un mosquito que les pique).

 

Ciclo básico de transmisión del virus West Nile.
(Fuente: elaboración propia).

El que el virus circule en un territorio viene determinado básicamente por la presencia en el mismo de vectores y hospedadores competentes en suficiente número. En tal “sustrato”, compatible con la circulación del virus, éste prosperará si es introducido en la zona. La introducción puede ser natural (movimientos naturales -migratorios o no- de aves infectadas, o de mosquitos, que empujados por el viento pueden salvar distancias respetables) o mediada por las actividades humanas (por ejemplo, el comercio de animales exóticos, entre otras).

El virus West Nile era considerado un virus tropical africano de poca importancia hasta hace poco. Fue descrito por primera vez en Uganda (distrito de West Nile, de ahi su nombre) en 1937.  En los años ’50 del siglo XX se encontró en Egipto y en Oriente Medio, donde se describieron los primeros casos de enfermedad neuroinvasiva en humanos. Se paseó por el Mediterráneo en los años ’60 y ’70, causando algunos brotes de enfermedad en caballos. Tras una ausencia de dos décadas, a finales de los ’90 del siglo XX volvió a aparecer en el Mediterráneo y en Europa del Este, y desde entonces no ha parado de aumentar su incidencia. Una idea de su expansión actual en Europa la da el siguiente mapa, elaborado por el Centro Europeo de Control y Prevención de Enfermedades (ECDC).

 Pero si en Europa el virus West Nile se ha expandido de forma notable en los últimos 15 años, lo que ha ocurrido aproximadamente al mismo tiempo al otro lado del Atlántico ha sido una expansión sin precedentes: desde su introducción en Nueva York en 1999, y en tan solo 4 temporadas, el virus invadió toda Norteamérica, de costa a costa y de México a Canadá, causando una epidemia de enormes proporciones, que afectó severamente a decenas de miles de personas y causó estragos igualmente en los animales, principalmente caballos y aves. A diferencia de Europa, en América las aves si resultaron muy afectadas, quizá porque las especies de aves americanas sean más susceptibles a enfermar por este virus de lo que lo son sus homólogas europeas. El caso es que numerosas aves, principalmente córvidos y otros paseriformes, sufrieron las consecuencias de la infección, encontrándose sus cadáveres en gran número, incluso en los parques y jardines de las ciudades. Tan sólo en Estados Unidos, el virus ha causado hasta hoy más de 30.000 casos clínicos diagnosticados en humanos, de los que algo más de 1000 han sido mortales. El virus, que tras 12 años de transmisión continuada ya es considerado endémico en Norteamérica, ha proseguido su expansión hacia América del Sur, donde ha llegado a alcanzar territorio argentino en 2006. Está presente igualmente en Centroamérica y el Caribe, donde ha llegado igualmente desde el Norte, si bien la incidencia de la enfermedad disminuye cuanto más se desciende en latitud, un fenómeno aún no explicado satisfactoriamente.

El virus West Nile no solo se ha dispersado muy eficazmente por Europa y América, sino que ha alcanzado una distribución mundial, estando presente  en todos los continentes habitados de la Tierra. Se le considera el arbovirus más extendido en el mundo. Las claves del éxito reciente de este virus podrían residir en que se trata de un virus muy “generalista“, capaz de infectar a un gran número de especies de vertebrados y prosperar eficazmente en muchas de ellas, así como ser transmitido por una importante variedad de mosquitos, de amplia distribución en el mundo. Aunque el papel del cambio climático en esta expansión es aún incierto, y sin duda han influido otros factores, se especula que el calentamiento global ha podido “empujar” a este virus hacia zonas más templadas de la Tierra.

Usutu

El virus West Nile no es el único flavivirus epornítico recientemente ”emergido” en nuevos territorios. En 2001, durante un episodio de mortalidad masiva de mirlos en los parques de Viena (Austria) se identificó un flavivirus hasta el momento desconocido en Europa, denominado virus Usutu. Se trata de un virus muy similar al virus West Nile desde el punto de vista genético y antigénico. Las similitudes también incluyen su origen africano (el virus Usutu fue descrito por primera vez en Sudáfrica en 1959, y ha sido detectado en humanos y en mosquitos en diversos países del África Subsahariana antes de su aparición en Europa), y su ciclo de transmisión, con reservorios aviares y mosquitos como vectores. El ser humano puede resultar infectado, si bien este es un fenómeno más raro que en el caso del virus West Nile. La infección es a menudo asintomática, aunque en ocasiones puede causar signos leves (fiebre, exantema). En algunos casos se ha producido una infección más severa, en pacientes con diversas patologías de base. El virus Usutu es un patógeno importante para determinadas especies de aves susceptibles, entre ellas los mirlos (Turdus merula).  Desde el año 2001 en que alcanzó Centroeuropa, el virus no ha cesado de expandir su rango geográfico en este continente, habiendo sido detectada su presencia en Austria, Hungría, Suíza, Italia, España y más recientemente, en Alemania, y hallándose cierta evidencia de su presencia (serológica) en el Reino Unido. El virus Usutu no ha sido detectado (aún) fuera de África, Europa y la zona mediterránea.

 Virus de la encefalitis japonesa

El virus de la encefalitis japonesa (JEV)  es con diferencia el más importante de este grupo por el número de casos anuales de enfermedad en humanos (unos 40.000, de los que el 25% son mortales) agravado porque a menudo afecta a niños, con importantes secuelas de por vida en los que sobreviven. Su rango geográfico es Asia Oriental, donde es endémico, aunque recientemente se ha expandido significativamente, tanto hacia el Este, llegando a Pakistan,  como hacia el suroeste, alcanzando el norte de Australia. Como peculiaridad, que lo diferencia de los otros virus de su grupo, el cerdo puede actuar como reservorio en situaciones endémicas.

 Virus de la encefalitis de St. Louis

El virus de la encefalitis de St. Louis (SLEV) era el flavivirus más prevalente en América hasta la irrupción del WNV en 1999 y su posterior expansión. SLEV y WNV han co-circulado en los mismos territorios, empleando los mismos vectores y hospedadores, y al parecer WNV ha ganado en la competición, al menos en algunos casos [6]. Históricamente, el SLEV ha sido el causante de graves epidemias de encefalitis en EE.UU. en la década de los años ’30 del siglo XX, pero su incidencia se estabilizó hace décadas, situándose actuante en alrededor de 35 casos clínicos por año. La mayoría son leves, pero un pequeño porcentaje desarrolla enfermedad neurológica grave, con una mortalidad en estos casos del 3-30%. El SLEV circula endémicamente no solo en América del Norte, sino también en América Central y en Suramérica, causando casos esporádicos desde hace décadas. Sin embargo, en los últimos años se han producido brotes de mayor entidad tanto en Brasil como en Argentina, por lo que puede considerarse un virus emergente en estos países.

 Virus de la encefalitis del Valle de Murray

El virus de la encefalitis del Valle de Murray (MVEV) es un flavivirus endémico en el Norte de Australia y en Papua-Nueva Guinea. Ocasionalmente produce brotes epidémicos en los estados al Sur del Rio Murray. Causa una encefalitis grave en aproximadamente uno de cada 1000 infectados. Los brotes están relacionados con los ciclos hídricos, y principalmente con la abundancia de lluvias, los monzones y los dessbordamientos de ríos. La incidencia de encefalitis por MVEV es baja, de entre 15 y 45 casos anuales, si bien en tiempos recientes se ha observado un aumento de la incidencia en el Noroeste de Australia (Pilbara y Kimberley), asociado con el aumento de población y la construcción de presas y nuevos regadíos en la zona.

A modo de conclusión

Nos hemos dejado otros flavivirus emergentes porque este post se está haciendo ya largo.  Los abordaremos más adelante. En cualquier caso, el mensaje que pretende transmitir este post es que de alguna forma este grupo de virus relacionados, pertenecientes al mismo género, comparten una serie de características que hacen que las circunstancias que actualmente prevalecen a nivel global, con el incremento del comercio, el transporte, la producción de alimentos, y posiblemente también el aumento de la temperatura media de la superficie de la Tierra, de algún modo están favoreciendo su expansión.

Referencias:

[1] Jiménez-Clavero, M.A. Animal viral diseases and global change: bluetongue and West Nile fever as paradigms. Frontiers in Genetics (2012) Vol 3  Nº 00105. (DOI=10.3389/fgene.2012.00105).

[2] Jiménez-Clavero, M.A. West Nile o Nilo Occidental. Enferm Infecc Microbiol Clin. 2009;27(5):308–312

[3] Tenorio, A., Lozano, M.E., Zeller, H., Donoso-Manke, O. Virus con denominación de origen: sin nombre, Nápoles, West Nile Enferm Infecc Microbiol Clin. 2009;27(5):308–312

[4] Sáiz, J.C. Virus con denominación de origen en español: el virus del Nilo Occidental. Enferm Infecc Microbiol Clin. 2009;27(5):308–312.

[5] Sotelo, E; Fernández-Pinero, J; Jiménez-Clavero, M.A. La fiebre/encefalitis por virus West Nile: reemergencia en Europa y situación en España. Enferm Infecc Microbiol Clin (2012) 30:75-83. – vol.30 núm 02

[6] Reisen WK, et al (2008). Persistent West Nile Virus Transmission and the Apparent Displacement St. Louis Encephalitis Virus in Southeastern California, 2003−2006  J Med Entomol. 45:494-508. 

 

 

Etiquetas: , , , , , , , , , , , , , , , ,
Categorias: Nuevos virus

La virosfera

 

En el post del pasado 13 de febrero prometimos abordar la siguiente pregunta “¿de donde “emergen” los virus emergentes? Ha llegado el momento de responderla, pero para ello, primero hay que hacerse algunas preguntas más, todas ellas en torno a la naturaleza de la “virosfera”. Vamos por orden:

¿Cuántos virus hay? Hay dos formas de enfrentarse a esta pregunta: una, tratar de averiguar cuantos tipos (o especies) de virus distintos hay (o sea, la aproximación cualitativa), y otra, preguntarse por la cantidad de virus existente sobre la Tierra, su número y su masa (aproximación cuantitativa). La respuesta a estas preguntas puede considerarse en gran medida especulativa, ya que queda mucho por saber antes de poder contestarlas con cierta precisión, pero lo importante del ejercicio que vamos a realizar no es lo exacto que resulte el cálculo final. Lo importante es que este ejercicio es util para dar una idea de la complejidad del mundo de lo virológico.

¿Cuántos virus diferentes hay?

La respuesta a esta pregunta no está en los libros, ni siquiera en los textos especializados. Si husmeamos en un buen texto sobre virología lo que podemos encontrar es una serie de capítulos dedicados a describir cada una de las familias de virus reconocidas por el momento, los géneros de que se componen y las especies víricas que pueblan esos géneros. ¿Es eso lo que buscamos? No, por supuesto. En el mejor de los casos, encontraremos una cifra global de los virus conocidos hasta ahora. Por ejemplo, en la última edición del tratado de virología de Fields (Fields Virology 6th Edition, 2006), en el capítulo dedicado a la familia “Herpesviridae” (compuesta por los virus similares al virus de la varicela-herpes zóster) se recogen aproximadamente 200 especies víricas distintas de herpesvirus, pero enseguida veremos que este número se queda muy corto.

Consideremos lo siguiente: si elegimos una especie animal cualquiera, por ejemplo, la bovina, se conocen cinco especies diferentes de herpesvirus que infectan al ganado bovino de forma específica. De igual modo, se han descrito por ahora nueve herpesvirus equinos, ocho herpesvirus humanos, etc, por lo que podemos decir que aproximadamente otros tantos infectan a cada una de las demás especies de mamíferos. En total hay descritas unas 5400 especies de mamíferos (probablemente esto es una fracción de las especies de mamíferos realmente existentes), y nada hace pensar que los herpesvirus prefieran determinados mamíferos como huéspedes. Ello permite estimar en torno a algunas decenas de miles el número de especies distintas de herpesvirus de mamíferos realmente existentes, una cifra muy superior –en varios órdenes de magnitud- a la de los herpesvirus descritos hasta la fecha. Pero también existen herpesvirus de aves, de reptiles, de anfíbios, etc, por lo que el número anterior debe incrementarse aún al menos tantas veces como clases de vertebrados existen. Sobre los invertebrados ni hablamos, porque sus virus son aún un mundo poco conocido, pero hay que pensar que su complejidad es probablemente mayor que en vertebrados. Tengamos asimismo en cuenta que hay otras familias taxonómicas de virus además de la familia de los herpesvirus, como la de los poxvirus (viruelas, mixomatosis, etc), flavivirus (fiebre amarilla, dengue, etc), orthomyxovirus (gripes),  picornavirus (fiebre aftosa, polio, hepatitis A), reovirus (lengua azul, peste equina africana), etc, y que con cada una de ellas podemos razonar aproximadamente del mismo modo. Incluso hay una buena cantidad de virus sin clasificar en familias. Una primera conclusión, a la luz de este ejemplo, es que conocemos una ínfima parte de los patógenos víricos que realmente existen. A ellos hay que añadir los virus no patógenos, que circulan silenciosamente, a los que, obviamente, conocemos menos, y los cuales probablemente existen en un número y variedad muy superiores a sus homólogos patógenos. La complejidad de los virus de plantas no es inferior, como tampoco lo es la de los virus que infectan a otros microorganismos como las bacterias, los hongos y los parásitos. Incluso hay virus que infectan otros virus. Por supuesto, hemos simplificado un poco, ya que muchos virus infectan a más de una especie de hospedador, pero ello no invalida nuestro razonamiento central: por cada especie de ser vivo sobre la Tierra existe una panoplia de virus distintos capaces de infectarla, lo que convierte a estos pequeños seres en la mayor fuente de biodiversidad sobre la Tierra. Ello da una somera idea de la complejidad real de mundo de los virus, de lo que aquí empezaremos a llamar desde ahora “la virosfera”, de la que conocemos solo una ínfima parte, fundamentalmente aquella que más nos interesa desde el punto de vista sanitario, y que incluye a los virus que nos afectan a nosotros y a los seres que criamos y que nos sirven de alimento (animales domésticos y plantas cultivadas).

¿Qué cantidad de virus hay sobre la Tierra?

Si el aspecto cualitativo de la virosfera es difícil, el cuantitativo no digamos. Créanme que no exagero si les digo que cada uno de nosotros somos un “saco de virus”. No se preocupen, ya que la inmensa mayoría de los virus que medran en nuestro organismo son absolutamente inocuos. Ya dijimos antes que los virus no patógenos son mucho más comunes –afortunadamente- que los patógenos. Estudios recientes sobre el viroma* humano han determinado que, por ejemplo en cada gramo de heces de un solo indivíduo hay del orden de 108 partículas víricas que corresponden a varios cientos de especies distintas de virus, la mayoría de los cuales son bacteriófagos o “fagos”, es decir, infectan a las bacterias intestinales, pero otros muchos son virus entéricos, que se propagan en nuestro tracto gastrointestinal y son eliminados por las heces, la mayor parte de las veces sin hacernos ningún daño. Nuestro viroma no se compone tan solo de los virus intestinales, sino que también forman parte de él los presentes en las secreciones orales, nasales, oculares, la piel, etc. Además, existe variación individual, e incluso temporal en el mismo indivíduo. Análogamente, en otras especies hay viromas tan complejos como el del ser humano. Pero no nos desviemos del argumento principal: estábamos hablando de cantidad, de masa en definitiva. Es difícil hacer estimaciones sobre la masa que corresponde a nuestros virus con respecto a nuestra masa corporal. Luego volvemos a este asunto. En cuestiones de masa, es más fácil y más ilustrativo hablar del agua, y en particular del agua del mar.

En 1989 un estudio, publicado en Nature (Bergh, O. & cols. Nature 340, 467–468 (1989), reveló un dato sorprendente: en un litro de agua de mar hay entre 109 y 1010 partículas víricas (más en aguas cercanas al litoral y en la zona eufótica, es decir, en los 100 metros más cercanos a la superficie, y menos en zonas oligotróficas). Numerosos estudios posteriores han corroborado este dato, que de por sí indica que la virosfera representa una parte significativa de la biomasa total del Planeta. Algunas estimaciones indican que el nº de virus sobre la Tierra podría alcanzar la cifra de 1031 (Wobus & Nguyen, Curr Opin Virology 2012, 2:60-62), alrededor de 10 veces más que el número de células procariotas (bacterias) estimado. De hecho, en el cuerpo humano se estima que hay 10 bacterias por cada una de nuestras células, y probablemente hay 10 partículas víricas por cada bacteria.

Si en números totales la cifra de virus que contiene la virosfera es enorme, veamos que pasa si traducimos esa cifra en masa. Por supuesto, los virus son muy pequeños, y en la comparación en masa salen perdiendo, pero aún así, merece la pena hacer unos pocos cálculos más para estimar cual podría ser la masa de la virosfera. Si tenemos en cuenta que una partícula vírica media “pesa” alrededor de 10 attogramos, o lo que es lo mismo, 10-17 gramos (un attogramo= 10-18 gramos), un sencillo cálculo nos dice que la masa total de la virosfera terrestre es de unas 108 toneladas (100 millones de toneladas). Para ser unos seres de tamaño tan ínfimo, se trata de una fracción significativa de la biosfera, cuya masa se estima en unos 75.000 millones de toneladas. Por poner algunos ejemplos para poder comparar, la fracción del total de la biosfera que corresponde a los seres humanos es de alrededor de 250 millones de toneladas; el krill, 500 millones de toneladas; el total de animales de granja, 700 millones de toneladas, y los cultivos, 2.000 millones de toneladas.

¿Los virus cambian?

Si han seguido el blog, ya conocen la respuesta, pues habrán ido leyendo en algunos post anteriores que los virus son entidades biológicas muy variables. Dado que el material genético de los virus es básicamente de la misma naturaleza que el de los demás seres vivos (ADN y ARN), sus fuentes de variabilidad genética son esencialmente las mismas, es decir, mutación, e intercambio de segmentos genéticos, que puede tomar la forma de recombinación y, en el caso de los virus con genoma segmentado, de redistribución genética (“genetic reassortment”). Por no extendernos mucho más, solo añadiremos que los virus tienen además unos tiempos de generación muy cortos (o sea, que sus generaciones pasan muy rápidamente), por lo que son capaces de generar variantes con características nuevas, mejor adaptadas a medios cambiantes a un ritmo muy elevado. Respondiendo a la cuestión que encabeza este epígrafe, podemos decir que la virosfera, como el resto de la biosfera, está en permanente cambio. Los virus existentes ahora mismo son una “foto fija” de un proceso en continua evolución. La virosfera se describiría mejor usando una película que mediante una foto. Algunos virus se van extinguiendo, otros van evolucionando y cambiando para generar nuevas variantes adaptadas a nuevas situaciones que irán surgiendo en el entorno. Estos son los virus emergentes, los recién llegados a la virosfera.

En conclusión, los virus emergentes surgen como consecuencia de un proceso natural que mantiene el mundo vírico en perpetuo cambio y evolución, del que van surgiendo constantemente nuevas variantes, algunas de ellas con capacidades nuevas que pueden “explotar” en un medio no permisivo para los virus precedentes. A menudo, aunque no siempre, ese cambio consiste en la adaptación a una nueva especie. A veces es la adaptación a un nuevo vector, o a una nueva forma de transmisión, etc. Debemos de ver la emergencia de nuevos virus como un proceso natural, análogo al proceso de la evolución por la que surgen nuevas especies animales, vegetales, etc, en el  mundo vivo, aunque mucho más rápido. En la Naturaleza, como ya dijo Heráclito, todo fluye, nada permanece. Y los virus no son una excepción.

 

————-

* Viroma: conjunto de genomas de virus presentes en una determinada muestra, generalmente representativa de un ambiente o de un organismo, sano o enfermo

NOTA: en una próxima entrada de este blog trataremos las nuevas técnicas de secuenciación masiva o metagenómica para el estudio de viromas.

 

Etiquetas: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Categorias: General

Los arbovirus emergentes y el cambio global

La palabra arbovirus alude a la expresión inglesa “arthropod-borne virus” o virus transmitido por (picadura de) artrópodos  Estos virus se mantienen en la naturaleza en un ciclo que implica la infección alternante entre un hospedador vertebrado y un vector artrópodo, lo cual ya de por sí significa una adaptación muy específica a unas condiciones ambientales muy concretas, que son aquellas en las que pueden prosperar tanto vectores como hospedadores. Por ello las arbovirosis (enfermedades causadas por virus transmitidos por artrópodos) son el prototipo de enfermedades cuya distribución e incidencia pueden verse más afectadas por los cambios ambientales, y de modo especial por los cambios en el clima.

Los arbovirus no constituyen un único grupo taxonómico, sino que son un grupo de virus  muy heterogéneo que tienen como vínculo común su peculiar forma de transmisión. Entre los arbovirus hay patógenos importantes para el hombre y los animales. Quizá el que más estragos nos ha causado históricamente ha sido el virus de la fiebre amarilla, aunque gracias a la vacunación afortunadamente su circulación está bastante restringida. Otros arbovirus patógenos de importancia para el hombre incluyen miembros de los géneros flavivirus (dengueencefalitis japonesaWest Nile, encefalitis de Saint Louis, encefalitis transmitida por garrapatas), bunyavirus (fiebre del Valle del Rift, Crimea-Congo), alphavirus (encefalitis equinas del Este, del Oeste y Venezolana, Sindbis, Chikungunya). Entre los arbovirus que producen enfermedades importantes en el ganado podemos destacar algunos miembros del género Orbivirus (lengua azulpeste equina, enfermedad hemorágica epizoótica) que son transmitidos por picaduras de culicoides, unos pequeños dípteros a veces llamados también jejenes y que afectan fundamentalmente a rumiantes domésticos (ovejas, cabras vacas), caballos y ciervos, respectivamente. Algunos de los miembros de la familia de los bunyavirus incluyen arbovirus que afectan a rumiantes, como el caso de los virus Akabane, Simbu o Aino, del mismo serogrupo que el recién “emergido” virus Schmallenberg, que posiblemente emplee esta misma vía de transmisión.

Calentamiento global: la temperatura media de la superficie de nuestro planeta se ha incrementado +0.74 ºC en el último siglo. Este incremento es mucho mayor que el producido en los ultimos 1000 años, y tiene como causa la actividad humana (IPPC Fourth Assessment Report, 2007)

El cambio global es el impacto de la actividad humana sobre los mecanismos fundamentales de funcionamiento de la biosfera, incluidos los impactos sobre el clima, los ciclos del agua y los elementos fundamentales, la transformación del territorio, la pérdida de biodiversidad y la introducción de nuevas sustancias químicas en la naturaleza. El cambio global afecta entre otras muchas cosas a la distribución geográfica e incidencia de las enfermedades infecciosas, ejerciendo una influencia notable en la emergencia de nuevas enfermedades, al ofrecer a los patógenos nuevas oportunidades en forma de nuevos ambientes favorables para prosperar y extenderse.

¿Cómo influye el cambio global en la emergencia de arbovirosis? Cada especie de  vector requiere un rango de temperatura y humedad y unas condiciones ambientales determinadas para poder desarrollar su ciclo vital. Por ello el rango de distribución geográfica de cada especie de vector está determinado por aquellas zonas donde se dan esas condiciones, y por los accidentes geográficos que limitan su dispersión. Sin embargo, a consecuencia del cambio global esta distribución se puede modificar, alterando con ello la distribución potencial de las arbovirosis. Un ejemplo es  la expansión a nivel mundial del mosquito tigre (Aedes albopictus), asociada al comercio de neumáticos usados. La lluvia produce pequeñas acumulaciones de agua en el interior de los neumáticos almacenados al aire libre, que son un magnífico hábitat de cría para este mosquito, pues imitan a los huecos de los troncos de árboles de la selva húmeda que constituyen su hábitat natural. Por medio del transporte de neumáticos conteniendo los huevos, el mosquito (de origen asiático) ha alcanzado una distribución mundial.

En este caso el factor del cambio global relacionado con esta expansión es el incremento del comercio y el transporte internacional.  Este mosquito fue detectado por primera vez en España en 2004, en enclaves de la costa mediterránea. En Italia y Francia su presencia está relacionada con la aparición reciente de casos autóctonos de chikungunya, una enfermedad tropical endémica en países bañados por el índico, y de reciente expansión a Europa, caracerizada por fuertes artromialgias (“chikungunya” significa “espalda doblada” en lengua makonde).  También se relaciona con casos de dengue autóctono detectados en el sur de Francia recientemente. Otras expansiones vectoriales tienen más que ver con el calentamiento global, uno de los efectos más tangibles del cambio climático antropogénico. La elevación de la temperatura ambiental hace “habitables” para los vectores áreas que antes les estaban vedadas, a la vez que hace inhabitables otras hasta entonces compatibles con su ciclo. La consecuencia de esto es que los límites de distribución geográfica de muchos vectores se están desplazando hacia el norte en el hemisferio norte, y hacia el sur en el hemisferio sur. También  están alcanzando altitudes mayores a las observadas hasta ahora. Por ejemplo, el principal vector del virus de la lengua azul en el Mediterráneo es Culicoides imicola. La distribución de este vector ha sufrido un desplazamiento hacia el norte en los últimos años, encontrándose en latitudes en las que nunca antes había sido observado. Lo mismo ha pasado con otras especies de jejenes y con ello (aunque no sea éste el único motivo) se ha desplazado el rango geográfico de la propia lengua azul, lógicamente. De igual modo, mosquitos como Aedes japonicum y Aedes albopictus han sido detectados por primera vez en Alemania (valle del Rhin) en verano de 2011). Estos hallazgos representan expansiones geográficas hacia el norte de vectores relevantes para importantes arbovirosis, como el chikungunya, el dengue o la encefalitis por virus West Nile, y preparan el camino para la futura expansión de éstas.

El calentamiento global también favorece otros procesos más sutiles, como por ejemplo, la “virogénesis“: a mayor temperatura más eficaz es la propagación de un virus dentro de un vector. También  la proporción de vectores “competentes” para la transmisión en una población depende de la temperatura ambiente.

El agua es otro de los elementos afectados por el cambio global y que influyen notablemente en las arbovirosis emergentes. El cambio climático afecta también a la abundancia y régimen de lluvias, y a la frecuencia de episodios de lluvias torrenciales, huracanes y ciclones. Las inundaciones crean grandes áreas de cría de mosquitos, que son una oportunidad para que prosperen diversas arbovirosis, entre ellas la encefalitis por virus West Nile. Tras el desastre producido por el huracán Katrina en 2005, que provocó la inundación de grandes áreas de Luisiana y Mssissipi, se produjo un recrudecimiento de la epidemia por este virus  en las zonas afectadas.  Por otro lado, también forma parte del cambio global la gestión de los recursos hídricos para crear zonas de regadío o proporcionar agua potable para abastecer a la población. Ello tiene efectos importantes sobre la distribución y abundancia de los vectores: la inundación artificial para crear zonas de regadío puede estar detrás de la expansión de algunas arbovirosis. Incluso se ha llegado a relacionar el abandono de las piscinas dentro de zonas residenciales afectadas por impagos de hipotecas en un episodio de recrudecimiento de encefalitis por virus West Nile en California en 2007. Igualmente la construcción de presas e inundación subsiguiente de grandes espacios tiene consecuencias para crear o destruir hábitats compatibles con la transmisión de arbovirosis. Es bien conocida la relación entre la aparición de graves brotes de fiebre del Valle del Rift y la construcción de grandes presas en África (Asuán en Egipto, Merowe en Sudán, Diama en Senegal, etc).

En resumen, las arbovirosis son especialmente sensibles a los efectos del cambio global, que ya sea a través del aumento del transporte y comercio internacional, ya a través del cambio climático y sus efectos en la temperatura y ciclo del agua, ya por intervenciones directas en la gestión del agua, pueden alterar la distribución e incidencia de estas enfermedades, lo cual frecuentemente da lugar a episodios de emergencia. Las arbovirosis emergentes pueden asimismo considerarse como verdaderos indicadores de los cambios ambientales derivados del cambio global, notablemente del cambio climático.

Algunos enlaces relacionados:


Etiquetas: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Categorias: Cambio global