‘Biocombustibles’

La Comisión Europea prevé que los biocarburantes sigan siendo en 2030 la principal energía alternativa en el transporte

La Comisión Europea en su nueva “Estrategia Europea de bajas emisiones para el transporte” pretende implantar energías alternativas de bajas emisiones para el transporte en la que se incluyen los biocombustibles avanzados.

Autor: [Alberto Gonzalez -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT]

La Comisión Europea ha  diseñado una estrategia para la movilidad de bajas emisiones ya que el transporte en la UE todavía depende del petróleo en cerca del 94 % de sus necesidades energéticas, lo que representa una cantidad mucho mayor que en cualquier otro sector y hace que el transporte sea muy dependiente de las importaciones. Si bien la transición hacia las energías alternativas de bajas emisiones en el transporte ya se ha iniciado, será necesario incrementar su ritmo en la próxima década. Es una oportunidad para que Europa desarrolle su liderazgo en las actividades de investigación en nuevos productos, como los biocombustibles avanzados que a medio plazo serán especialmente importantes para la aviación, así como para los camiones y los autocares.

Los biocarburantes no sólo seguirán siendo en 2030 la principal energía alternativa utilizada en el transporte de la Unión Europea (UE), sino que su cuota de mercado crecerá significativamente durante los años siguientes hasta cubrir a mediados de siglo el 37% de la demanda energética final en el transporte, superando claramente a la aportación de la electricidad (16%). Para cumplir los objetivos de energías renovables y descarbonización previstos para 2030, el consumo anual de biocarburantes deberá incrementarse al menos un 50% con respecto al actual.

Para conseguir los objetivos globales de energías renovables (27%) y ahorro de emisiones de gases de efecto invernadero (-40%) previstos en la UE para 2030, resultará fundamental la contribución de los biocarburantes convencionales –los producidos a partir de materias primas cultivadas en tierra–, así como una aportación creciente de biocarburantes avanzados –los fabricados a partir de desechos y materiales lignocelulósicos–. Será imprescindible para ello tanto el mantenimiento de las actuales obligaciones de biocarburantes como el establecimiento de una obligación específica de biocarburantes avanzados, que sea ambiciosa y técnicamente factible.

Fuente: http://www.appa.es

Etiquetas:

Combustión inversa: Aviación sostenible con queroseno solar

[Autor: Salvador Luque-Investigador Titular, Instituto IMDEA Energía]

El ser humano necesita energía para vivir. Calentar la comida, cargar el teléfono, ver la televisión, navegar por internet, o viajar, serían imposibles sin energía. Afortunadamente la naturaleza ofrece su abundante energía en muy diversas formas y, a lo largo de la historia, el ser humano se ha vuelto extraordinariamente eficiente transformándolas para poder aprovecharla. Dos formas de energía son particularmente útiles: la mecánica, asociada al movimiento, y la eléctrica, por su gran versatilidad. Ambas suelen obtenerse en gran medida a partir de procesos de combustión, donde la elevada energía interna de un combustible (generalmente fósil), ha de liberarse en forma de calor como paso previo. La combustión origina como subproductos vapor de agua y dióxido de carbono (CO2), responsable principal éste último del calentamiento global mediante efecto invernadero.

El Instituto IMDEA Energía está inmerso en una ambiciosa línea de investigación donde se pretende hacer justo lo contrario: tomar CO2 y vapor de agua, aportar calor, y obtener combustible como resultado. La idea básica es materializar un proceso hipotético de combustión inversa. El CO2 y vapor de agua pueden obtenerse de la atmósfera, el aporte calorífico se realiza mediante energía solar concentrada, y el combustible de síntesis consiste en hidrocarburos líquidos. Enmarcado en el proyecto SUN-to-LIQUID del programa europeo Horizonte 2020, el objetivo fundamental del trabajo es la validación experimental a escala pre-comercial de toda la cadena de procesos termoquímicos utilizando energía solar real.

La tecnología se basa en la aplicación cíclica de reacciones redox (reducción-oxidación) en óxidos metálicos a temperaturas por encima de 1000 ºC. El reactor solar donde ocurren las reacciones químicas está especialmente diseñado para potenciar la transferencia de calor y acelerar las cinéticas de reacción. En una primera fase, la energía solar concentrada se emplea en convertir los compuestos de entrada (CO2 y vapor de agua) en gas de síntesis. El llamado gas de síntesis es esencialmente una mezcla de hidrógeno y monóxido de carbono (CO), que son los ladrillos fundamentales para la producción de combustibles sintéticos. Este gas se convierte en queroseno en una segunda etapa basada en la técnica Fischer-Tropsch, desarrollada mediado el s. XX y comercialmente disponible en la actualidad.

Al consumir CO2 atmosférico, la obtención de combustibles de síntesis mediante energía solar se sitúa entre los procesos bien de muy baja huella bien potencialmente neutros en emisiones de carbono. El gas de síntesis producido en la primera etapa del proceso puede también transformarse en metanol, gasolina, diésel o casi cualquier otro tipo de hidrocarburo líquido, e incluso plásticos. La tecnología que se desarrolle en el proyecto podrá pues emplearse para producir combustibles limpios y abundantes para aviación, automóviles y otros medios de transporte. Como beneficios adicionales, la producción sostenible de combustibles incrementará la seguridad del suministro de energía y convertirá uno de los principales gases de efecto invernadero en un recurso valioso.

El proyecto se ha enfocado inicialmente en la producción de queroseno, combustible para aviación, por el hecho de que el transporte aéreo necesita combustibles de muy alta densidad energética para operar de manera económicamente viable. Tanto los motores eléctricos como los hidrógeno (que son, por ejemplo, tecnologías ya empleadas en el transporte por carretera) conllevan el uso de componentes muy pesados para aviación. Es notorio que el célebre Solar Impulse 2 necesita una envergadura superior a la del Boeing 747 para transportar a una sola persona. Una vez que en aviación se seguirán necesitando hidrocarburos a medio y largo plazo, el queroseno sintético renovable es una de las mejores maneras de hacer que este medio de transporte sea más sostenible.

El Instituto IMDEA Energía está encargado en el proyecto SUN-to-LIQUID de la construcción de un campo solar ultra-modular y con gran concentración de la energía solar. Adyacente a las instalaciones del centro en el Parque Tecnológico de Móstoles, su desarrollo ya ha originado sustanciales avances tecnológicos en la construcción de heliostatos de pequeño tamaño. El resto de socios del proyecto está formado por BHL (Bauhaus Luftfahrt, Alemania), ETH (Escuela Politécnica Federal de Zúrich), DLR (Centro Aeroespacial Alemán), HyGear (Países Bajos), Arttic (Francia) y Abengoa Research (España).

Es justo notar que se estima que serán todavía necesarios avances en la eficiencia de la producción de combustible, una reducción de costes de construcción y operación, y posiblemente entre 10 y 15 años, para que la tecnología pueda entrar en servicio comercial a escala industrial. Pero el consorcio tiene la ambición de dar un paso crucial hacia la implantación comercial de combustibles sintéticos sostenibles obtenidos a partir de materias primas virtualmente inagotables. En cuanto a transformaciones de la energía para su mejor aprovechamiento, esta inversión de la combustión puede jugar un papel esencial en una sociedad global industrializada donde la sostenibilidad asume cada vez mayor importancia.

Más información:

1. Página web del proyecto de SUN-to-LIQUID: http://www.sun-to-liquid.eu/

2. Página web del proyecto en la Comisión Europea: http://cordis.europa.eu/project/rcn/199438_en.html

3. Sobre campos solares ultra-modulares:http://www.madrimasd.org/blogs/energiasalternativas/2016/05/09/133036

4. Sobre la instalación en Móstoles:http://www.lavanguardia.com/local/madrid/20160420/401244494701/mostoles-cede-una-parcela-a-imdea-energia-para-construir-instalacion-solar.html

Etiquetas:

Investigadores de la Unidad de Procesos Biotecnológicos del Instituto IMDEA Energía participan en la XVIII Reunión de la Red Temática Lignocel

[Autora: Elia Tomás-Instituto IMDEA Energía]

 

Investigadores de la Unidad de Procesos Biotecnológicos del Instituto IMDEA Energía han participado en la XVIII Reunión de la Red Temática Lignocel que ha tenido lugar en Jaén del 6 al 7 de octubre de 2016. En esta edición, la reunión ha estado organizada por el Grupo de Investigación “Ingeniería Química y Ambiental” del Departamento de Ingeniería Química, Ambiental y de los Materiales de la Universidad de Jaén. 

La Red Temática “Retos enzimáticos, químicos y de ingeniería para la utilización de recursos agroforestales no alimentarios (lignocelulosa) en una bioeconomía más sostenible y menos contaminante (Red Lignocel)” está financiada por el INIA dentro del Programa Estatal de I+D+i orientada a los Retos de la Sociedad (Acción Complementaria AC2015-00008-00-00).

Un año más, la reunión de la Red Lignocel ha permitido a investigadores de diferentes centros y universidades nacionales compartir sus avances científicos en el ámbito del aprovechamiento de los materiales lignocelulósicos. Durante dos días, científicos e investigadores de renombre  han discutido temas tan interesantes y punteros como la utilización de nuevos hongos y enzimas o la síntesis de nanocelulosa, biocombustibes y nuevos productos de alto valor añadido a partir de los materiales lignocelulósicos. Los avances en las nuevas tecnologías para el pretratamiento de la biomasa lignocelulósica también han sido ampliamente comentados durante la reunión.

En ese contexto, los investigadores del Instituto IMDEA Energía presentaron su trabajo “Efecto del estrés mecánico sobre Kluyveromyces marxianus y Saccharomyces cerevisiae en procesos de producción de bioetanol”.  Este trabajo de investigación permite estudiar cómo afecta el estrés mecánico a las levaduras productoras de etanol. Este estrés mecánico viene provocado por la presencia de altas cargas de sustrato en el medio de fermentación. Las altas cargas de material lignocelulósico son necesarias para que la producción de bioetanol sea económicamente competitiva ya que a mayor concentración de azúcares en el medio de fermentación, mayores serán las concentraciones de etanol potencialmente alcanzables y, por tanto, menores los costes de la destilación. Los resultados de este trabajo ponen de manifiesto el efecto negativo que ejerce la presencia de sustrato sólido insoluble sobre la producción de etanol y permitirán diseñar nuevas estrategias para mejorar la producción de biocombustibles y otros bioproductos a partir de lignocelulosa.

Etiquetas:

Biometano: Un biocombustible con gran potencial y que necesita más apoyo.

España posee un escaso nivel de desarrollo de este interesante biocombustible que puede ser inyectado directamente en las redes convencionales de gas natural o ser utilizado como combustible de automoción.

[Autor: Juan Antonio Melero Hernández-Grupo de Ingeniería Química y Ambiental de la Universidad Rey Juan Carlos]

El biometano puede producirse principalmente a partir de dos vías: la depuración del biogás generado por digestión anaerobia de residuos biodegradables o bien a partir del gas de síntesis generado en la gasificación de la biomasa tras un proceso de metanización y purificación. La digestión anaerobia se está poco a poco convirtiendo en Europa en una fuente viable de energía renovable (en el año 2014 el número de plantas ascendió a 17.420) si bien es cierto con un reparto bastante desigual – destacando claramente Alemania con respecto al resto de países europeos – . En el caso de la gasificación, aunque ha experimentado un desarrollo tecnológico importante en los últimos años, todavía no es viable su desarrollo a escala industrial. Esta tecnología complementa la digestión anaerobia pues permite el procesado de biomasa lignocelulósica difícil de procesar en los digestores anaerobios.

 

Aunque el biogás se produce en todos los países de la UE (principalmente por digestión anaerobia) sólo catorce de ellos producen biometano por purificación del correspondiente biogás y sólo en 11 de ellos el biometano se inyecta a la red de gas natural y en 12 se utiliza como carburante de automoción. Destaca claramente Alemania donde se produce el 75 % de la producción europea de biometano y que en un porcentaje elevado es inyectado en la red de gas natural. El segundo productor es Suecia y en este país destaca su uso como combustible en automoción y ya ha superado al CNG (Gas Natural Comprimido) con una participación de mercado del 57%. España en este particular se encuentra a la cola de Europa con un total de 48 plantas de biogás industrial (un número insignificante si las comparamos con las más de 8.000 de Alemania) y con una única planta de biometano (Alemania posee 178 y Suecia 59 de un total de las 367 existentes en Europa).

 

Se estima que en Europa mediante el aprovechamiento de diferentes materias primas renovables se podría alcanzar una producción en el año 2030 de unos 40.000 millones de m3 de gas natural equivalente mediante procesos de gasificación y digestión anaerobia (www.greengasgrids.eu) y que representaría entre 18.000-20.000 millones de m3 de biometano.

 

Este “green” gas proporciona interesantes ventajas:

 

  • Beneficios medioambientales. Contribuye a los objetivos climáticos europeos reduciendo las emisiones de CO2 equivalente mejorando la calidad del aire.
  • Seguridad de suministro e independencia energética europea. Actualmente en Europa el 66 % del consumo de gas natural se importa de terceros países de cierta inestabilidad política.
  • Contribución a la economía circular. El uso del digestato como fertilizante cierra el ciclo nutritivo en ecosistemas regionales y evita las emisiones de CO2 que serían liberadas debido a la producción de fertilizantes minerales.
  • Sociales. Generación de empleo y en concreto en áreas rurales.
  • Tecnológicas. La digestión anaerobia es una tecnología con elevado grado de desarrollo y de gran versatilidad para producir biometano (100 % de origen renovable).
  • Sector transporte. El biometano se presenta como el biocarburante de segunda generación más viable y con una elevada eficiencia energética y menor impacto ambiental si se compara con los combustibles convencionales (gasolina y gasóleo). Actualmente se utilizan unos 3.300 millones de m3 de metano en transporte en Europa y las previsiones moderadas indican que este número puede alcanzar la cifra de 16.500 millones en el 2025 y el biometano podría representar un 20 % del total.

 

Sin embargo, en la actualidad este biocombustible se encuentra con diferentes desafíos que deberán ser solucionados en el futuro:

 

  • Insuficientes incentivos fiscales. Los actuales planes nacionales de apoyo establecidos para las energías renovables se olvidan del biogás. Además, los regímenes fiscales en Europa deberían ofrecer incentivos para el biometano similares que para los combustibles líquidos (en base a unidades de energía). La futura Directiva sobre Fiscalidad de la Energía, así como los regímenes de ayudas deberían reconocer el importante papel que juega el biometano en la descarbonización del sector de la energía en Europa.
  • Falta de cooperación transfronteriza. Las diferentes normas técnicas y sistemas de certificación impiden el desarrollo de un comercio transfronterizo.
  • Ausencia de una normativa común europeasobre la calidad del gas para acceder a la red de gas. Aunque muchos países inyectan biometano en la red y han desarrollado normas de calidad nacionales estas difieren considerablemente entre ellas. El desarrollo de normas en la UE para la inyección en red y el uso como combustible para vehículos es necesario.
  • Insuficiente infraestructura para combustibles CNG/LNG para vehículos. No es suficiente en la mayor parte de Europa la red de estaciones de servicio de gas ni el número de vehículos propulsados por gas. Es necesario el fomento de la infraestructura europea del gas.
  • Falta de reconocimiento político. A niveles nacionales sólo unos pocos Estados Miembros han establecido objetivos específicos para el biometano. Incluso a nivel Europeo, rara vez se menciona al biometano de forma explícita en documentos políticos o legislativos; habitualmente está incluido en términos de gas natural o biocombustibles e incluso ignorado en modelos de trabajo y evaluaciones de impacto. La falta de reconocimiento político es en gran medida consecuencia del desconocimiento.

 

Es de esperar que en el futuro se vayan superando estas barreras y que el biometano puede poner en acción todo su potencial. Y si bien es cierto que en la mayoría de países de Europa, necesita aún un importante impulso, en España se necesita un apoyo mucho mayor. No obstante, se debe resaltar que se cuenta con una base amplia de innovación, un potencial de producción destacable y un conocimiento de las ventajas sociales, medioambientales y energéticas de interés para los sectores productores de residuos y que finalmente deberán impulsar este biocombustible.

 

Más información.

 

Asociación Española de biogás

http://www.aebig.org/

Asociación Europea de biogás

http://european-biogas.eu/

Etiquetas:

Adsorbentes Selectivos para Mejorar la Producción de Bioetanol Lignocelulósico

El uso de adsorbentes selectivos basados en  materiales porosos híbridos (MOF´s) puede ayudar a incrementar la eficiencia de los procesos de fermentación que se emplean para obtener bioetanol lignocelulósico que, al contrario que los biocombustibles de primera generación, se obtiene a partir de residuos vegetales que no tiene valor alimentario.

[Autor: Juan M. Coronado-Instituto IMDEA Energía]

Los materiales conocidos en inglés como  metal-organic framework (MOF’s) son sólidos porosos híbridos, en cuya composición participan agrupamientos metálicos y componentes orgánicos. Como consecuencia de sus elevadas superficies específicas y de la posibilidad de diseñar a medida las características de sus grupos funcionales, estos compuestos pueden ser excelentes adsorbentes selectivos. A efectos prácticos esto implica que un MOF con las propiedades adecuadas podría retener una molécula concreta ignorando otras de una mezcla heterogénea. Esta capacidad de discriminar moléculas es potencialmente útil en muchas aplicaciones industriales. Un buen ejemplo de ello es el estudio recientemente publicado que ha demostrado que la eficiencia de la producción de etanol de biomasa celulósica puede beneficiarse de la utilización de MOFs específicamente desarrollados para eliminar inhibidores de la fermentación (Chem. Commun. 2016, DOI: 10.1039/c6cc05864g).

Los restos de podas de plantas leñosas, la paja de los cereales y otros residuos vegetales contienen en su estructura cantidades muy significativas de celulosa que se puede transformar en  bioetanol mediante la fermentación de azúcares extraídos de la biomasa. La gran ventaja de esta vía de producción de bioetanol es que, al contrario que la ruta convencional, no compite con la producción de alimentos. Actualmente este proceso genera ya anualmente cientos de millones de litros de combustibles renovables, y se espera que este volumen se siga incrementando.

La extracción de los azúcares de la biomasa requiere descomponer los tejidos estructurales de las plantas, que son notoriamente recalcitrantes desde un punto de vista químico. Para conseguir realizar este proceso de forma eficiente los fabricantes de biocombustibles dependen típicamente de tratamientos ácidos en condiciones muy agresivas. Este proceso funciona bien, pero genera soluciones acuosas de azúcar contaminadas con 5-hidroximetilfurfural (HMF) y otros compuestos derivados del furano. Estas sustancias son tóxicas para los organismos que producen la fermentación y por tanto limitan la eficiencia de la producción de bioetanol. Además son difíciles de separar de soluciones azucaradas, ya que los adsorbentes que atrapan las moléculas dañinas también tienden a retener los azúcares que se usan como substrato.

Un equipo liderado por Alexander Katz de la University of California en Berkeley, puede haber encontrado un método definitivo para superar los problemas de separación en las disoluciones azucaradas. Este grupo ha descubierto que el MOF conocido como NU-1000, que contiene moléculas de pireno en su estructura, retiene selectivamente los compuestos furánicos, ignorando a los azúcares. De esta manera en los ensayos realizados con concentraciones de glucosa trescientas veces mayores que las de HMF el material NU-1000 es capaz de atrapar el 80 % de las moléculas de furanos sin alterar de forma apreciable la concentración de glucosa. Aunque seguramente serán necesarios más estudios no cabe duda de que este trabajo abre nuevas e interesantes  perspectivas para incrementar la eficiencia de la producción de biocombustibles de segunda generación

Etiquetas:

Nuevo impulso para el desarrollo de la tecnología del hidrógeno como combustible en España

Aunque en diversas ciudades de España se puede ver algún vehículo impulsado por hidrógeno, el fomento del uso de este tipo de vehículos en la sociedad pasa necesariamente (y entre otras cosas) por el desarrollo paralelo de una infraestructura de estaciones de servicio que puedan surtir hidrógeno. En este sentido, se ha puesto en marcha el proyecto H2PiyP, que creará un corredor de hidrógeno entre España, Francia y Andorra.

Autor: [Arturo J. Vizcaíno – Universidad Rey Juan Carlos]

El proyecto H2PiyR, “Corredor de Hidrógeno para la región Pirenaica”, está incluido en el programa europeo de cooperación POCTEFA 2014-2020 y dispondrá de un presupuesto total de 3,9 millones de euros, de los que 2,4 millones provienen del FEDER a través del mencionado programa.

El proyecto consiste en el desarrollo de un corredor transfronterizo de estaciones de repostaje para vehículos de hidrógeno (hidrogeneras) que conecte España, Andorra y Francia, logrando así la conexión con los países del centro y norte de Europa donde la movilidad sostenible con hidrógeno ha despegado y es una realidad. Para ello, se construirán 6 hidrogeneras, que generarán hidrógeno limpio de energías renovables, situadas estratégicamente en Zaragoza, Huesca, Fraga, Tarragona, Andorra y Pamiers. A ellas se añadirán las ya construidas en Huesca (Parque Tecnológico Walqa) y Zaragoza (Valdespartera), así como 2 que se están construyendo en Rodez y Albi, situadas al sur de Francia. Se completará así un corredor con un total de10 hidrogeneras que cubrirán un área aproximada de 500 kilómetros para vehículos basados en pila de combustible.

Entre los objetivos que persigue el proyecto, destacan: crear una red de movilidad con hidrógeno entre los distintos países de la Unión Europea, reducir las emisiones asociadas a los vehículos tradicionales, impulsar las economías locales, crear oportunidades de negocio (en especial para las PYMEs) y fomentar la innovación en tecnologías del hidrógeno en todas las áreas del conocimiento necesarias para implementar el corredor.

El pasado 12 de septiembre de 2016 tuvo lugar la reunión de lanzamiento del H2PiyR en la sede de la Fundación para el Desarrollo de Nuevas Tecnologías del Hidrógeno en Aragón, quien coordinará el proyecto durante los próximos tres años. Es de esperar que H2PiyR se convierta en un banco de ensayos a escala real para la demostración de las ventajas del uso del hidrógeno y los vehículos de pila de combustible.

Fuentes:

https://www.poctefa.eu/eje-1/

http://hidrogenoaragon.org/

 

Etiquetas:

BioForEver, nuevo proyecto de demostración para la obtención de bioproductos a partir de biomasa lignocelulósica

BioForEver, acrónimo del proyecto BIO-based Products from FORestry via Economically Viable European Routes, es uno de los últimos en contar con el respaldo económico del consorcio Bio Based Industries Joint Undertaking (BBI JU), creado a partir del programa Horizonte 2020 de impulso a la investigación y la innovación de la Unión Europea. Quince empresas buscan desarrollar un modelo de biorrefinería a partir de biomasa leñosa para la posterior fabricación de, entre otros, butanol, etanol y plásticos.

[Autor: Jose Miguel Oliva -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT]

El consorcio está liderado por DSM, multinacional holandesa de base científica que participa junto con Poet en una de las primeras plantas comerciales de etanol lignocelulósico.

En un comunicado conjunto de las quince empresas que forman el consorcio se expone el principal objetivo de BioForEver: “demostrar la viabilidad de varias cadenas nuevas de valor para transformar materias primas lignocelulósicas en productos químicos a escala industrial, como butanol, etanol y ácido 2-5-furandicarboxilico (FDCA)”. Este último compuesto serviría para fabricar plásticos equivalentes a los actuales PET (polietileno tereftalato). Sus promotores advierten que este proyecto de demostración tendrá muy en cuenta la viabilidad comercial del uso final de estos productos.

Según se afirma en el comunicado “Una de las características que diferencia este proyecto de biorrefinería de otros es que analiza el proceso de transformación desde el comienzo hasta el final de diferentes cadenas de valor, de manera integral”. Igualmente se afirma que “Las biorrefinerías deben ser un componente, entre otros, de la bioeconomía, no un elemento aislado en el que no se sabe de partida dónde van a acabar los productos elaborados”.

El consorcio muestra su optimismo sobre la posibilidad de alcanzar nuevos procesos químicos que sean plenamente competitivos frente a otros derivados del petróleo (energía) y los azúcares (alimentación).

BioForEver acaba de dar sus primeros pasos y tendrá una duración de tres años. El presupuesto total es de 16,2 millones de euros, de los cuales el consorcio europeo público/privado BBI creado dentro del programa Horizonte 2020 contribuye con diez millones. La intención es que este tipo de biorrefinerías se asienten en importantes centros logísticos europeos como el puerto de Rótterdam.

El proyecto está abierto no solo a biomasa leñosa, sino a otras derivadas de residuos agrícolas y cultivos energéticos. Es el caso del bagazo procedente de la variedad de caña de azúcar (EUnergyCane) con la que trabaja Alkol Biotech.

Fuentes: http://www.energias-renovables.com. http://www.dsm.com

Etiquetas:

Transformación directa de lignocelulosa en alcanos líquidos

[Autor: J.L.G. Fierro, Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049  Madrid]

La conversión de biomasa lignocelulósica renovable en combustibles líquidos resulta particularmente atractiva aunque representa un verdadero reto debido a su complejidad química y extrema estabilidad química. En un estudio muy reciente titulado “Direct hydrodeoxygenation of raw woody biomass into liquid alkanes”, Nature Communications 7 (2016) doi: 10.1038/ncomms11162, se ha puesto de manifiesto que puede realizarse la hidrodesoxigenación de biomasa en alcanos líquidos con un rendimiento másico hasta 28.1% utilizando un catalizador multifuncional Pt/NbOPO4 en suspensión en ciclohexano. Este catalizador permite la conversión simultánea de fracciones de celulosa, hemicelulosa y lignina en hexano, pentano y alquilciclohexanos, respectivamente, sin ningún pretratamiento previo de la biomasa de partida.

Se estima que el consumo de los combustibles de transporte va a aumentar notablemente a lo largo de las próximas décadas, con el consiguiente deterioro ambiental asociado.  Ante tal situación, se necesitan alternativas de producción que vengan a cubrir este incremento de demanda, difícil de satisfacer mediante el crudo convencional.  A lo largo de los últimos años se han explorado con éxito varios procesos de producción basados en biomasa renovable. Los componentes principales de la biomasa son: (i)  lignocelulosa, un polímero lineal de D-glucopiranosa conectada por enlaces β-1,4-glycosidicos, es el componente principal de la biomasa (40-50%), (ii), hemicelulosa , es un heteropolímero de varios monómeros de azúcares (16-33%); y (iii), lignina, es un polímero complejo con monómeros de alcoholes cumaril, coniferil y sinapil fuertemente entrecruzados en la estructura (15-30%).  Como consecuencia de la complejidad estructural de la biomasa lignocelulósica y su resistencia química a la transformación, la eficiencia energética y el coste efectivo de producción de combustible líquidos constituyen uno de los retos más grandes de la tecnología.

Hasta la fecha se han seguido dos estrategias para abordar este proceso: (i) la separación de la lignocelulosa en azúcares aislados y lignina seguido de un procesado hidrolítico, bien químico o biológico, y (ii) tratamiento termoquímico de la lignocelulosa para producir intermedios tales como bio-aceites  (pirolisis) o gas de síntesis (gasificación), acoplados a etapas de purificación catalítica. Los procesos termoquímicos presentan la ventaja  de conversión completa pero resultan usualmente no selectivos, por otra parte, los bio-aceites o el gas de síntesis tienen que purificarse antes del proceso de utilización final. Si bien la tecnología basada en la hidrólisis ofrece producción selectiva  de combustibles líquidos, requiere varios procesos acoplados en serie con el consiguiente aumento del consumo energético. Además, la lignina originada en la hidrólisis de la lignocelulosa se quema como un combustible de escaso valor.

Aún con las dificultades mencionadas, se han puesto en marcha estrategias alternativas selectivas y eficientes para convertir el sustrato lignocelulósico en combustibles líquidos. La conversión directa de lignocelulosa en alcoholes y fenoles se ha realizado recientemente. Sin embargo, la producción directa de hidrocarburos (eliminación total de oxígeno) se consigue básicamente en la actualidad a partir de componentes separados de la lignina o la celulosa. Por ejemplo, se ha reportado un proceso en dos etapas  (pretratamiento químico e hidrogenolisis/hidrogenación) de conversión de lignina en alcanos y metanol. A nivel industrial, las empresas Shell/GTI  y Virent Energy System han establecido las tecnologías de transformación de azúcares en combustibles líquidos. La tecnología Shell se basa en un proceso termoquímico en el que el precursor reacciona a temperatura relativamente elevada (350–540 °C). En cambio, el proceso Virent convierte los compuestos oxigenados solubles en agua en hidrocarburos C4+, alcoholes y cetonas en fase acuosa o en fase de vapor. Esto se consigue mediante reformado de compuestos oxigenados solubles en agua, seguido de condensación y desoxigenación. Más recientemente se ha utilizado un sistema de tres catalizadores que convierten el material celulósico en alcanos líquidos.

Muy recientemente, un equipo multidisciplinar liderado por el Dr. Q. Xia del Research Institute of Industrial Catalysis, Shanghai (China), con la colaboración del STFC Rutherford Appleton Laboratory, Oxfordshire (UK) y la School of Chemistry, University of Nottingham, Nottingham (UK) realizó el estudio “Direct hydrodeoxygenation of raw woody biomass into liquid alkanes”, Nature Communications 7 (2016) doi: 10.1038/ncomms11162. En este trabajo se utilizó un catalizador  Pt/NbOPO4 multifuncional que convierte directamente la biomasa lignocelulósica en alcanos líquidos con rendimiento elevado. El proceso que se realiza en una sola fase (ciclohexano),  convierte fracciones de celulosa, hemicelulosa y lignina en hexano, pentano y alquilciclohexanos, respectivamente (Figura 1), lo que representa la conversión directa de lignocelulosa en alcanos líquidos bajo condiciones suaves de reacción y un solo catalizador. Además, este proceso no requiere ningún pretratamiento químico de la biomasa de partida, lo que conlleva un ahorro energético importante comparado con las tecnologías termoquímicas e hidrolíticas existentes.

 

 

 Figura 1. La biomasa puede convertirse directamente en alcanos líquidos sobre un catalizador de Pt/MbOPO4 en suspensión en ciclohexano. Las fracciones de celulosa, hemicelulosa y lignina producen respectivamente hexanos, pentanos y alquilciclohexanos.

Etiquetas:

Combustibles solares: una alternativa a los combustibles fosiles

Autores: Esther Rojas y Alfonso Vidal-CIEMAT

Aunque las formas más inmediatas de aprovechar la radiación solar serían la producción de electricidad y la calefacción, sin embargo, hay otras formas de uso de la radiación solar más innovadoras como son los combustibles producidos directamente a través de la luz del sol.

En la actualidad, la mayoría de los combustibles para el transporte, la generación de electricidad, y  otras materias primas para la industria se producen a partir de carbón, petróleo o gas natural. Pero una ruta alternativa para la producción de combustibles líquidos y gaseosos podría ser el uso de tecnologías que aprovechan la luz solar.

La energía solar puede ser capturada y almacenada directamente en los enlaces químicos de un material, o “combustible”, y luego ser usada cuando sea necesario. Estos combustibles químicos se denominan combustibles solares.

El término «combustible» se utiliza en un sentido amplio: se refiere no sólo a los combustibles para el transporte y la generación de electricidad, sino también a materias primas utilizadas en la industria. Este concepto de producir combustibles utilizando la radiación solar no es nuevo, dado que es la base de la fotosíntesis, en donde se utiliza la luz solar para convertir el agua y dióxido de carbono en oxígeno y azúcares u otros materiales que pueden considerarse como combustibles para las plantas.

Durante más de medio siglo, los científicos han buscado la posibilidad de producir estos combustibles solares en el laboratorio. Hay tres posibles vías:

 • la fotosíntesis artificial en el que los sistemas hechos por seres humanos imitan el proceso natural;

• Fotosíntesis naturales;

 y • procesos termoquímicos.

En los últimos diez años la producción de combustibles solares a gran escala ha sido un área de intensa actividad de investigación, y actualmente está atrayendo interés comercial. Se han hecho progresos significativos en la producción de dos tipos muy importantes de combustibles: Por un lado, el hidrógeno, que puede ser producido por disociación del agua usando radiación solar y que se puede utilizar como combustible para el transporte y como materia prima para la industria. Y por otro, los combustibles a base de carbono, como el metano o el monóxido de carbono que pueden ser obtenidos por reducción de CO2 utilizando la radiación solar como fuente de energía. Estos productos son materias primas clave para la fabricación de una amplia gama de productos industriales, incluyendo fertilizantes, productos farmacéuticos, plásticos y combustibles líquidos sintéticos.

A nivel internacional, hay una tendencia creciente a grandes programas dedicados a la investigación e innovación en producción de combustibles solares, algunos de ellos como JCAP dedicados a la producción de combustibles por fotosíntesis artificial están alcanzando gran renombre.  El objetivo final de JCAP (Joint Center for Artificial Photosynthesis), centro de innovación auspiciado por al DOE Energía, es desarrollar y en última instancia, permitir el despliegue en escala de una tecnología de la fotosíntesis artificial que producirá directamente combustibles a partir de luz solar.

Sin embargo, dado que la investigación del programa ALCONES se centra en tecnologías basadas en procesos termoquímicos, merece la pena citar algunas iniciáticas a nivel internacional en este campo. La unión Europea a través del  FCH_JU (http://www.fch.europa.eu/), asociación público-privada de apoyo a la investigación, está estableciendo estrategias para potenciar la I+D en este campo de gran importancia futura.  Cabe destacar, el papel de, Suiza, que lidera la investigación en este área, con programas diversos (http://www.prec.ethz.ch/research/solar-fuels/solarfuels.html) para la producción de combustibles solares.

Estados Unidos, a través del programa STCH (solar thermochemical hydrogen production) financiado por el DOE un programa con el objetivo de desarrollar tecnologías para producir bajo coste (~3 USD/ kg) a partir de energía solar cuyo objetivo principal estaba dirigido al desarrollo de ciclos termoquimicos por su potencial de eficiencia. En este programa participan centros como SNL (Sandia National Laboratories), University of Colorado, University of Minnesota, Caluifornia Institute of Tehcnbology (Caltech), Argonne National Laboratory y General Atomics.  A principios del 2007, el programa de STC cambió su enfoque y comenzó nuevas vías de investigación para producir combustibles de hidrocarburos líquidos en lugar de H2  a través del programa S2P (Sunshine to petrol) http://energy.sandia.gov/energy/renewable-energy/solar-energy/sunshine-to-petrol/. Finalmente, Australia, a través de la iniciativa ASTRI (Solar Thermal Research Initiative, programa de investigación auspiciado por Gobierno Australiano, a través de la Agencia de Energía Renovable de Australia (ARENA), y en estrecha colaboración con varios Centros de Investigación de otros países tiene por objeto demostrar la producción de combustibles líquidos para incrementar la aportación de las CST y disminuir los gases de efecto invernadero de Australia (http://www.astri.org.au/).

Estas iniciativas representan un paso importante sobre el importante potencial de producción de combustibles a partir de la luz solar. Cada vez hay más impulso en la comunidad científica global para el desarrollo de estas tecnologías que harán que los combustibles producidos por radiación solar limiten el impacto de los combustibles fósiles en nuestro planeta.

Etiquetas:

Se celebra el 4th Symposium on Biotechnology Applied to Lignocelluloses

Durante los días 19-22 Junio de 2016 se ha celebrado en Madrid (España) el 4th Symposium on Biotechnology Applied to Lignocelluloses, organizado por el grupo de investigación “Biotecnología para la Biomasa Lignocelulósica” del Centro de Investigaciones Biológicas del CSIC.

Autora: María José Negro  -Unidad de Biocarburantes- Dpto. de Energía- CIEMAT

En el camino para el desarrollo de una bioeconomía sostenible y competitiva, el uso eficiente de materias primas lignocellulósicas representa un aspecto crucial. En este contexto, el 4th Symposium on Biotechnology Applied to Lignocelluloses” (LIGNOBIOTECH IV) ha tenido como objetivo aunar los recientes avances en biotecnología y ciencias afines aplicadas en la utilización de biomasa como materia prima renovable para su utilización en un concepto amplio de biorrefinería.

Desde los fundamentos a la aplicación, durante los tres días de duración del Simposio, se han tratado aspectos relacionados con la genómica, la bioquímica, la tecnología del procesamiento aguas abajo y las cuestiones ambientales relacionadas con el uso de la biotecnología para la producción de biocombustibles, productos químicos y otros productos a partir de la celulosa, hemicelulosa, lignina y otros componentes de la biomasa lignocelulósica.

En este encuentro se han realizado 50 ponencias orales y 92 presentaciones en forma de poster, en los que se mostraron los últimos avances en las distintas áreas relacionadas con la biotecnología aplicada a la lignocelulosa. De acuerdo con la organización del evento, la presencia de destacados ponentes en las diferentes áreas de trabajo, ha convertido este Simposio en un evento internacional de primera magnitud y punto de encuentro de investigadores y profesionales de relevante prestigio.

La Unidad de Biocarburantes del CIEMAT participó en LIGNOBIOTECH IV con la presentación del poster “Barley straw fractionation for sugars production”. En este trabajo, se ha evaluado el fraccionamiento en dos etapas de la biomasa de paja de cebada; una primera etapa de pretratamiento hidrotérmico, seguido de una etapa de pretratamiento de extrusión en medio alcalino. Mediante la utilización de esta estrategia de fraccionamiento se facilita el aprovechamiento integral de los azúcares presentes en la paja de cebada, permitiendo una extracción eficaz de la fracción de lignina. Este trabajo se ha realizado en el marco del proyecto RESTOENE 2, subvencionado parcialmente por la Comunidad de Madrid.

Etiquetas: