Las impresora 3D, Escáner 3D e impresión 3-D son un conglomerado de tecnologías que se encuentran causando furor en el mundo industrial. Incluso las promesas de estos instrumentos comienzan a considerarse un fenómeno de masas. Básicamente, si las impresora convencionales o 2D dan lugar a un producto plano (como una hoja impresa), las 3D nos ofrecen una maqueta en tres dimensiones (que puede ser operativa) utilizando materiales tales como los polímeros de plástico, entre otros. De este modo se pueden construir o mejorar instrumentales a precios reducidos y al gusto del usuario. Posiblemente sus aplicaciones se extiendan pronto a otras iniciativas. La noticia que os ofrecemos hoy nos habla de la fabricación de ciertos componentes que forman parte de un aparato con vistas a  medir la conductividad hidráulica del suelo, y ha sido llevado a cabo en un laboratorio por colegas de nuestra disciplina, publicándose en una revista de nuestra especialidad. Resulta prematuro, y más aún en vista de mis escasos conocimientos sobre esta tecnología, ensalzar o criticar sus futuras aplicaciones a la hora de investigar el medio edáfico. Pinchando en los palabros enlazados obtendréis información más documentada de la que yo os puedo proporcionar personalmente. Os muestro también un video, como al que os redirecciona este enlace. Comienzo pues este post recogiendo los primeros párrafos de una breve entrada en Wikipedia, para continuar con la noticia original. Tal solo pretendo suministrar unas notas iniciáticas para todos aquellos que deseen ampliar su información sobre estas nuevas tecnologías y sus aplicaciones. Finalmente comentar que, en vista del crecimiento exponencial de su uso, la gran cantidad de aplicaciones obtenidas en poco tiempo, así como del relativo bajo costo del aparatito, posiblemente esta tecnología termine cambiando numerosos procedimientos e instrumentos actuales en nuestros laboratorios. ¡Ya veremos!, aunque esta vez sí soy optimista.

Juan José Ibáñez

impresora-3d

Una Impresora 3D entre otras muchas. Fuente: Tecnología BIT

De Acuerdo a Wikipedia Una impresora 3D es una máquina capaz de realizar «impresiones» de diseños en 3D, creando piezas o maquetas volumétricas a partir de un diseño hecho por ordenador. Surgen con la idea de convertir archivos CAD en prototipos reales. A día de hoy son utilizados para la matricería o la prefabricación de piezas o componentes, en sectores como laarquitectura y el diseño industrial. El sector en el que este tipo de herramientas resulta más común es el de las prótesis médicas, donde resultan ideales dada la facilidad para adaptar cada pieza fabricada a las características exactas de cada paciente.

Los modelos comerciales son actualmente de dos tipos:

-de compactación, en las que una masa de polvo se compacta por estratos.

-de adición, o de inyección de polímeros, en las que el propio material se añade por capas.

Según el método empleado para la compactación del polvo, se pueden clasificar en:

Impresoras 3D de tinta: utilizan una tinta aglomerante para compactar el polvo. El uso de una tinta permite la impresión en diferentes colores.

Impresoras 3D láser: un láser transfiere energía al polvo haciendo que se polimerice. Después se sumerge en un líquido que hace que las zonas polimerizadas se solidifiquen.

Una vez impresas todas las capas sólo hay que sacar la pieza. Con ayuda de un aspirador se retira el polvo sobrante, que se reutilizará en futuras impresiones.

3-D Printing in Soil Science Laboratories

ScienceDaily Nov. 28, 2012 — Imagine printing a 3-D object as easily as a typed document. Lose a button? Print one. Need a new coffee cup? Print one. While the reality of printing any object on demand may lie in the future, the technology necessary to do it has been available for decades. And soil scientists are now taking advantage of its possibilities.

 In a paper published online this week in the Soil Science Society of America Journal, a team of researchers headed by Philippe Baveye explored the potential of manufacturing soil science equipment using 3-D printing. They found that the technology, also called «rapid manufacturing» or «stereolithography,» has major benefits over traditional manufacturing methods, and they were able to successfully produce intricate pieces. Also, the ability to easily share the designs used by 3-D printers could allow for better replication of experiments and collaboration among soil scientists.

First developed in the 1980s, the process of 3-D printing begins with a computer-generated model [often a Computer Aided Design (CAD) image] that is «sliced» by a program to create very thin layers of the object. The printer then uses an extruder that lays down a material — frequently a thermal plastic — layer by layer, as defined by the computer program, to create the full 3-D object. This method is currently being used to build a variety of items, such as mobile phones, jewelry, and artificial limbs.

Baveye’s team used the technology to create parts of a permeameter, a device used to measure the hydraulic conductivity of soils. Traditionally, this type of equipment is made using lathes and drills. However, those techniques are painstaking and time-consuming. Also, traditional methods cannot create intricate designs or incorporate certain features such as non-concentric structures. Moreover, once a product is made, researchers are resistant to making changes even if the piece would work better if modified.

Baveye and his colleagues found that by using a 3-D printer to create their design of the permeameter parts, they were able to avoid several of these problems of traditional equipment manufacturing. Many designs that used to be impossible to make, such as intricate conduits, can now be easily worked into the 3-D printing models. Also, once a piece is designed and even manufactured, changes to the product can be easily made in the computer model and printed anew.

Says Baveye, «Should anyone want permeameter columns with a narrower or larger diameter, designs can be scaled up or down in seconds, and a new piece can be printed without extra human labor

By avoiding the painstaking and backbreaking work of traditional methods, 3-D printing has inadvertently leveled the playing field. While in the past few students and researchers were willing to use the drills and lathes, many more now look forward to the opportunity to create and print CAD drawings. This technology has opened doors to aspiring soil scientists that may have otherwise passed on the opportunity to create designs and equipment for their research.

An additional benefit of using 3-D printing, and one that Baveye believes could greatly impact soil science, is the ease with which designs can be shared among researchers. When equipment is made using traditional methods, detailed procedures and even blueprints have to be provided for replication of the experiment. Even then, there are often details that make it difficult for others to produce the same design. 3-D printing eliminates this hurdle.

«CAD files can be easily sent by email to colleagues anywhere in the world,» explains Baveye. «That means experiments can be replicated easily, even if they involve complicated pieces of equipment.»

While the benefits of 3-D printing are obvious, there are some limitations. The object design must consist of contiguous solid material, and the smallest features must be larger than the minimum resolution of the printer being used. Even with these constraints, however, 3-D printing offers a promising alternative to older manufacturing methods, and Baveye and his colleagues have no doubt that the technology will become a mainstream method.

«We expect that the evolution of 3-D printing will follow that of laser printers,» says Baveye. «As the price of 3-D printers continues to fall, we expect that they are going to be more and more widely used in soil science laboratories and in many other disciplines.»

 Story Source: The above story is reprinted from materials provided by Soil Science Society of America (SSSA). Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference: David P. Rangel, Claire Superak, Mayra Bielschowsky, Katie Farris, Ruth E. Falconer, Philippe C. Baveye. Rapid Prototyping and 3-D Printing of Experimental Equipment in Soil Science Research. Soil Science Society of America Journal, 2012; 0 (0): 0 DOI: 10.2136/sssaj2012.0196n

Compartir:

Un comentario

Deja un comentario