biocarbones-biomasa-torrefacta

Fuente: Colaje Google imágenes

 Al alba, en pleno desierto, o al menos en una zona árida de Bostwana (Gaborone), unos investigadores japoneses se afanan en rellanar enormes cafeteras para elaborar un riquísimo café torrefacto, por supuesto. Un corresponsal del Blog “Un Universo Invisible Bajo Nuestros Pies”, abre los ojos y observa atentamente los movimientos de sus colegas nipones. “De pronto, estos últimos cargan aquellos enormes recientes con su aroma exquisitamente humeante en camionetas”, poniéndose en marcha. ¡Qué groseros! Barrunta nuestro corresponsal desplazado hasta aquellos “tórridos lugares”. ¡Ni siquiera me han ofrecido una taza!. Pero apenas tiene tiempo de subirse precipitadamente a uno de aquellos vehículos. La caravana parte. Uno de los japoneses mira en su portátil la ubicación de la zona a la que d debían dirigirse, y tras una hora de tránsito indica por señas a sus compadres que ese es el lugar.   Los vehículos se ponen de nuevo en marcha lentamente hacia allí y apagan los motores. De pronto, ante los ojos atónitos de nuestro enviado especial, comienzan a verter el sabroso cafetito sobre el suelo, con mucho cuidado. Él se pregunta  a si mismo ¿Se tratará de despertar a los suelos de su prolongado letargo nocturno con cafeína?.  ¿Una nueva y revolucionaria manera de gestionar los suelos? Debemos reconocer que nuestro staff es escaso y el dominio del japonés no es nuestro fuerte, empero el enviado “conoce algunas palabras”. Se dirige hacia ellos y pregunta,  ¡Al margen de reprocharles que no le ofrecieran una taza de café y luego lo desparramaran sobre el suelo!, ¿que pretenden? ¿Cuál es el secreto de su experimento?. Responde afablemente uno de los nipones que había estado en España años atrás aprendiendo flamenco en Andalucía: “No cleo que le gustala ete café, no sienta muy bien: ¡malo, malo a uted!. Eta elaborado de resiluos de la biomassa”. El corresponsal que digámoslo ya, se llama Pepe, entre aliviado por no tener que sufrir más rebuscando en su precario vocabulario de la lengua del “país del sol naciente”, desconcertado por el “exquisito español” del asiático, y más aún por lo que se encontraba viendo insiste:  ¿Y que consiguen regando el suelo con ese líquido (ya gesticulando su rostro con un cierto asco)?. “Fácil, fácil, fácil, Así los suelos se humecen meol, absuelven mucha agua, mucha y nutritentrros, pol lo que  la cosecha mejollala; bonio ¿ehhh?, y solo mun eulo”. A su regreso nos narró entre  excitado y obnubilado su experiencia con un español bastante deplorable tras tanta charla en nipoñol….

Pero expliquémosla ahora porque esta iniciativa nipona tiene mucha enjundia. ¿Saben ustedes lo que es la biomasa torrefactada?. Se trata del producto obtenido  mediante el procesamiento de la materia orgánica de los residuos de cosechas, lodos residuales etc., que se utilizan para obtener energía al entrar en combustión. ¿Si pinchan en ese enlace, y leen atentamente, observarán que se trata de un procedimiento que produce unos materiales que luego troceados se utilizan para los fines aludidos. Son enormemente ricos en carbono requemado y repelentes al agua, por lo que se pueden almacenar al aire libre. ¿Pero cómo pueden mejorar la fertilidad del suelo y más aún incrementar su capacidad de retención de humedad y desprender nutrientes, o al menos incrementar su disponibilidad para las plantas de los ya existentes en el medio edáfico natural?. Tras escuchar atentamente tal cantidad de sandeces y deliberar si debíamos darle una oportunidad al reportero o despedirle del trabajo por payaso,  decidí previamente reunir a nuestro sanedrín de expertos, invitando de paso al afamado Profesor de Investigación Gonzalo Almendros, compañero desde hace 35 años  y prestigioso bioquímico del suelo, por lo que le apelamos cariñosamente Dr. Humus (entramos como becarios pre-doctorales simultáneamente en el CSIC y publicamos varios artículos conjuntamente en aquellos años de ¿eterna? Juventud). Pues bien, ni el propio Dr. Humus logró sacarnos de dudas, ya que también se quedó torrefactactado, es decir estupefacto.

 Veamos, como existe una gran confusión en la bibliografía entre lo que se denomina biochar, biocarbones y carbones (charcoal en la lengua del otro Imperio menguante, es decir el del Tio Sam). Ya hemos hablado “las mil y una noches” acerca del biochar, cuyos post los encontraréis tanto en nuestra categoría “fertilidad de suelos y nutrición vegetal”, así como en el que denominamos “etnoedafología y conocimiento campesino”. Allá podréis encontrar valiosa información.

También éramos conocedores de la producción de esas pellets de biomasa torrefactada, aunque ignorábamos el término. En principio, conforme a la literatura, el biochar se produce mediante una combustión en un ambiente bajo en oxígeno, mientras que la torrefacción en su total ausencia. ¡Eso creemos!, ya que en la nota de prensa, procedente de USA, en la que los nipones explican su tan inexplicable como apabullante hallazgo, haciendo uso simultáneamente de los vocablos torrefacción, biocarbón y biochar. El Dr. Humus también anda desconcertado a pesar de su gran talento, capacidad de trabajo y memoria descomunal. Y si eso ocurre mal asunto, ya que la confusión se encuentra en la literatura y notas de prensa, aun reconociendo nuestra ignorancia. Dividiremos pues nuestro farragoso análisis acerca de lo que dicen haber descubierto los investigadores descafeinados del sol naciente, antes de tomarse un té, pero también sobre el lugar elegido para el ensayo de campo, ya que los Aridisoles (suelos que se forman en ambientes áridos y desérticos) de Bostwana, y más aun con un carbón torrefacto de Jatropha curcas, que dicho sea de paso atesora algunas propiedades medicinales (¿será por eso?; ¿sanará los suelos?).

 El artículo original clarifica “algo” la diferencia entre el torrefactado y el proceso del biochar, empero toda la literatura existente resulta tan ambigua como para dudar si se acuñó el vocablo torrefacto a la hora de denominar tal enmienda con el fin exclusivo de causar la confusión en las filas del enemigo: colegas y lectores. Si el torrefactado y el corte en pellets dan lugar a productos hidrofóbicos, es decir repelentes al agua, al menos en primera instancia, resulta extraño que tras añadir la enmienda el medio edáfico este último retenga más agua. Obviamente la cantidad añadida 5% es bastante considerable y al mezclarse con los materiales del suelo puede alterar su estructura y quizás favorablemente, si bien por definición lo añadido no debería ser fácilmente descompuesto, por cuanto las mayor parte de las reacciones biogeoquímicas que acaecen en el medio edáfico demandan un medio acuoso. Pero ¡a saber!. Reiteremos que el ambiente es árido y tórrido, por lo que no es extraña la presencia de los Aridisoles. Sin embargo, la mayor parte de los tipos de suelos incluidos este orden de la USDA ST, poseen excesos de sales y nutrientes, ya que la escasa lluvia y la elevada evaporación no permiten lavarlos en profundidad, por lo que se acumulan así en su superficie. Sin embargo, leyendo el artículo original que no nos informa del tipo exacto de Aridisol, se nos informa de suelos oligotrofos, es decir pobres en nutrientes, los cuales no resulta ser lo más representativo de esta clase de suelos, dicho sea de paso.  En cualquier caso una lectura rápida del paper no informa de si el terreno se encuentre regado, lo cual resulta intrigante, ya que si apenas llueve, incrementar un 5% el contenido de humedad no serviría de mucho “la mayoría de los años”.  Más aun, la enmienda con los reiduos procesados de Jatropha curcas, debiera significar que en el territorio, al menos deben existir predios bajo riego para su producción y medios tecnológicos idóneos en su torrefacto procesamiento. Miren en Wikipedia la descripción del lugar (Bostwana, Gaborone), y detectarán que precisamente no se trata de un enclave excesivamente representativo, ya que parece encontrarse cerca de una gran ciudad, con pantanos, etc.

 Si partimos de un suelo yermo, y pobre en nutrientes, resulta fácil elevar “algo” su producción al añadir “algo” que no tenga propiedades perniciosas. Empero un incremento de agua del 5% y un ligero aumento de la disponibilidad de nutrientes no puede calificarse de experimento exitoso, ya que las producciones apenas mejorarían, sin un suplemento de agua adicional. Más aún, si la  Jatropha curcas, debe cosecharse en la zona ¿Cómo crece?: ¿en secano o regadío? Si lo hace sin agua suplementaria, ¿no daría lugar a escasas producciones?. Y una enmienda del 5% parece demasiada cantidad para tan escaso rendimiento. ¿Es rentable? Digamos, ya que resulta ser un detalle nada baladí, que el experimento fuera testado frente a parcelas control, que no recibían ningún tipo de enmienda, por lo que, añadir las pelles torrefactadas podría resultar en una fertilización más onerosa que otras muchas prácticas agrarias. El artículo tampoco dice nada al respecto.

 Resumiendo, se publica casi cualquier cosa, con independencia de su calidad, acerca de las bondades de quemar la biomasa y añadirla al suelo: biochar, biocarbones torrefactados, pasteurizados, vitaminados, liofilizados, ¿¿??.

Sin embargo, casi todas las culturas aborígenes neolíticas de los distintos continentes y ambientes (desde el gélido Nepal en la alta montaña, hasta los desiertos y bosques tropicales, a nivel del mar), convergieron en estas prácticas con muy buenos resultados al objeto de alcanzar prácticas agrarias sustentables. Actualmente parece que volvemos a redescubrir la pólvora, pero sin alcanzar el mismo éxito que nuestros ancestros. Materia de reflexión.

 Juan José Ibáñez

Improving poor soil with burned up biomass; by Staff Writers
Tokyo, Japan (SPX) Jun 21, 2016

Researchers at the RIKEN Center for Sustainable Resource Science in Japan have shown that torrefied biomass can improve the quality of poor soil found in arid regions. Published in Scientific Reports, the study showed that adding torrefied biomass to poor soil from Botswana increased water retention in the soil as well as – the amount of plant growth.

When high temperatures and the absence of oxygen are used to bring about the decomposition of biomass residue from agricultural products such as grains, the result is a charcoal-rich substance called biochar. Torrefied biomass – sometimes called bio-coal – is a type of biochar made at relatively lower temperatures that has recently received attention as a pretreatment method for biomass utilization.

In order to characterize the biological properties of soil treated with biochar, the team incorporated torrefied plant residual biomass from the biodiesel crop Jatropha curcas into aridisol, a type of soil found in arid regions such as Botswana, and compared several soil properties with samples that had not been treated.

Explained team leader Jun Kikuchi, «Jatropha is a potential biomass resource for dryland African landscapes, but the poor climate and soil conditions have limited its production. Our study shows that treating the poor soil with torrefied biomass improves a variety of factors that ultimately lead to greater plant growth.»

An important quality of good soil is its ability to retain water. Tests showed that water retention increased with the percentage of torrefied biomass, with 5% biomass yielding a soil that contained about 5% more water than the control soil. A good soil also remains structurally sound deeper in the ground where pressure from above is higher. Soil treated with 5% torrefied biomass showed significantly higher levels of compression stress than the control soil, and significantly shorter relaxation time – the time needed for it to relax back into its normal shape after being compressed.

After finding that the torrefied biomass retained more water, the team tested the chemical properties of the soils. They found that levels of potassium, phosphorous, and sulfur were higher in the soil treated with torrefied biomass, as was the availability of potassium, sodium, and phosphorous – three elements regularly take up from the soil by plants.

When they tested how well plants grew in the different soils, they found that plants grown in the torrefied biomass had thicker stems, much longer roots, and were heavier that those grown in the untreated soil. The plants grown in torrefied biomass also took up more potassium than controls and less manganese, an element known to inhibit plant growth.

Other important features of soil are its metabolic and microbial components. Some compounds produced by the degradation and break down of cellulose are known to promote plant growth. The researchers found that levels of these organic acids, such as lactate and acetate, were higher in the treated soil, again supporting the idea that torrefied biomass can enhance soil fertilization.

The treated soil also showed higher levels of Devosia sp.,and Opitutus sp., bacteria that use lactate as a carbon source. This indicated that the soil metabolites available in the treated soil allowed for a different microbial environment that presumably acted to enhance plant growth.

«Our next step,» says Kikuchi, «is to elucidate the complicated reactions between symbiotic microbiota and plants for effective growth in nutrient-poor environments.»

Research paper: Reference: Ogura T, Date Y, Masukujane M, Coetzee T, Akashi K, Kikuchi J (2016) Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Scientific Reports. doi: 10.1038/srep28011

¿Qué Es Torrefacción De La Biomasa?

Si has escuchado el término “torrefacción de la biomasa,” entonces puede que sepa que este proceso puede estar relacionado incluso en el tostado, como la compañía La Colombe Torrefaction, que utiliza esta tecnología para conseguir la energía en el tostado de sus granos.

Torrefacción de la biomasa técnicamente se refiere a un proceso de tostado en el que se calienta la biomasa, o piroliza, en un ambiente libre de oxígeno. El proceso aumenta la densidad de energía de la biomasa mediante la eliminación de los compuestos volátiles y rompe las moléculas complejas en otras más simples, en las que se utiliza con más facilidad la energía de carbono.

La torrefacción es el nuevo chico en el bloque de energía. Han sido sólo cinco años desde que los científicos propusieron por primera vez que el tostado de biocombustibles, como los granos de café, podría aumentar el rendimiento energético. Pero ahora la torrefacción está a punto de estallar en la escena de las energías renovables.

Con la torrefacción se presentan beneficios significativos en relación con el uso de la biomasa que no ha sido asada a fuego lento. Los pellets extremadamente secos reducen los costos (y huella ambiental) de transporte de los combustibles de biomasa. La mayor densidad de energía hace posible la co-alimentación con biomasa en las plantas diseñadas para el contenido energético más elevado del carbón. Y quizás lo más importante, el proceso hace que la biomasa sea resistente al agua, lo que significa que los operadores de plantas de energía pueden almacenar el material en el exterior sin arruinar la materia prima o apestar el vecindario.

Proceso de la torrefacción

La torrefacción es un tratamiento termoquímico de la biomasa de 200 a 320 ° C. Se lleva a cabo bajo presión atmosférica y en ausencia de oxígeno. Durante el proceso de torrefacción, el agua contenida en la biomasa, así como superfluos volátiles son liberados, y los biopolímeros se descomponen parcialmente, emitiendo diversos tipos de compuestos volátiles. El producto final es un material sólido, seco y ennegrecido, que se conoce comobiomasa torrefactada” o “bio-carbón”.

Durante el proceso, la biomasa normalmente pierde 20% de su masa y 10% de su valor de calentamiento, sin cambio apreciable en el volumen. Después de que se torrefactada la biomasa puede ser densificada, por lo general en briquetas o pellets utilizando equipos de densificación convencional, para aumentar su densidad de masa y energía y para mejorar sus propiedades hidrofóbicas. El producto final puede repeler el agua y por lo tanto puede ser almacenado en aire húmedo o la lluvia, sin cambio apreciable en el contenido de humedad o el valor de calentamiento, a diferencia de la biomasa original de la que está hecha.

La biomasa puede ser a veces una fuente de energía importante. Sin embargo, la naturaleza ofrece una gran diversidad de biomasa con diferentes características. Con el fin de crear cadenas de alta eficiencia de conversión de biomasa en energía, la torrefacción de biomasa en combinación con la densificación (peletización o la fabricación de briquetas) es un paso prometedor para superar la economía en la logística de soluciones de energía sostenible a gran escala, es decir, que sea más fácil de transportar y almacenar. Los pellets o briquetas son más ligeros, más secos y estables en almacenamiento en comparación con la biomasa del que están hechos.

Referencia: Treehugger

Resumen del Artículo Original.

Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Tatsuki Ogura et al. 2016; Scientific Reports 6, Article number: 28011 (2016) doi:10.1038/srep28011

Abstract

Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.

Traducción no supervisada de google de un fragmento del trabajo original

En los paisajes de las tierras secas de África, la mejora de suelos pobres en nutrientes es importante para aumentar la productividad agrícola, sobre todo porque se espera un crecimiento significativo de la población en esta región durante los próximos 100 años. En la República de Botswana, en el sur de África, Jatropha curcas L. ha recibido atención como un recurso de la biomasa, aunque ha exhibido un crecimiento satisfactorio debido al clima árido, daño por frío, y las condiciones del suelo (oligotróficas Aridisoles). Por lo tanto, se espera que los métodos de modificación del suelo para promover su producción agrícola en tierras no agrícolas.

En los ecosistemas de zonas secas, tales como paisajes africanos áridas, termitas, que construyen termiteros, desempeñar un papel clave en la mejora del suelo. Sus efectos pueden lograrse artificialmente mediante la enmienda del suelo usando potenciadores del suelo de carbón similar. Carbón vegetal tiene una estructura porosa y alberga los microbios del suelo que juegan un papel en el enriquecimiento del suelo.

El carbón activado se ha informado a aumentar los nutrientes, reducir la lixiviación de nutrientes, mejorar la absorción de nutrientes, y aumentar la producción de cultivos. Recientemente, el biochar, que se hace de los residuos de biomasa después de la cosecha, se ha estudiado para su uso para modificar suelos en varios países africanos

Compartir:

Deja un comentario