Posts etiquetados con ‘ecuación logística’

La vida logística

Como comentábamos en nuestra entrada La vida exponencial, el modelo de Thomas Robert Malthus no era muy realista, así que el matemático belga Pierre François Verhulst propuso otro modelo, la ecuación o función logística. Verhults nació en Bruselas el 28 de octubre de 1804 y falleció el 15 de febrero de 1849 en la misma ciudad.

 

Pierre François Verhulst

La familia de Pierre Verhulst no escatimó gastos para que pudiera tener una educación de la mayor calidad, y así estudió en uno de los mejores centros de su época, el Ateneo de Bruselas. El joven Verhulst destacó en todos los campos, especialmente en matemáticas, compartiendo honores con Joseph Plateau y Guillaume-Adolphe Nerenburger al graduarse en 1822. Tuvieron un excelente profesor de matemáticas,  Adolphe Quetelet, con el que le unió después una gran amistad. En ese año, Verhulst inicia sus estudios de matemáticas en la Universidad de Gante, en la que se reencuentra con Quetelet como profesor de álgebra. Tras unos inicios con algunas dificultades, comienza a destacarse por su capacidad matemática.

Se doctora en 1825 con una tesis sobre las ecuaciones bibnomiales, y es contratado como profesor de análisis matemático en el Museo de Ciencias y Letras de Bruselas en 1827. Pero su mala salud (quizás por la tuberculosis, no se sabe a ciencia cierta) hace que abandone las clases, aunque seguirá estudiando e investigando.

Lambert Adolphe Jacques Quetelet

 

En 1830 se produjo la independencia de Bélgica de los Países Bajos, y Verhulst, que había sido muy activo a pesar de su enfermedad y había sugerido muchas reformas, fue requerido por Quetelet para ayudarle a elaborar tablas de mortalidad en el nuevo estado belga. También Quetelet fue el que lo lleva en 1834 a la recién creada Academia Militar por el rey Leopoldo I, para impartir clases de matemáticas. En 1835 pasa a ser profesor de la Universidad Libre de Bruselas.

Aunque Verhulst hizo importantes contribuciones a las matemáticas, especialmente en el estudio de las funciones elípticas, su gran obra es Notice sur la loi que la population suit dans son accroissement, publicada en 1838. Quetelet había propuesto que el crecimiento exponencial que dictaba la ley de Malthus debería estar corregida con fuerzas que evitaban ese crecimiento, dependiendo del cuadrado de la tasa de crecimiento, pero Verhulst tenía una visión mucho más clara, y decía que “sabemos que el famoso Malthus demostró el principio por el que la población humana crece en progresión geométrica de manera que se dobla cada veinticinco años. El incremento virtual de la población debe estar limitado por el tamaño y la ferlididad del país. De manera que la población se irá acercando cada vez más a una situación estacionaria”.

 

Una curva logística particular. la sigmoide

En este y en el posterior artículo de 1844, Recherches mathématiques sur la loi d’accroissement de la population, Verhulst propone como modelo de crecimiento, la ecuación logística (nombre propuesto por él mismo). Se supone que la tasa de reproducción es proporcional a la población existente y también a la cantidad de recursos disponibles. Así que si P representa el tamaño de la población y t el tiempo, se deduce que

dP/dt = r P (1 – P/K)

donde r es la tasa de crecimiento y K la constante de persistencia (relacionada con la capacidad total de población que el sistema pudiera albergar).

Verhulst publicó un tercer trabajo en 1847, Deuxième mémoire sur la loi d’accroissement de la population, en el que criticaba su propio trabajo. Esto motivó que la ecuación cayera en el olvido hasta que fue redescubierta por Raymond Pearl y Lowell Reed en 1920.

A pesar de su fallecimiento prematuro a los 44 años, el año antes a su muerte fue elegido Presidente de la Academia Belga de Ciencias. Siempre será recordado por su ecuanimidad en los debates, y su enorme sentido del deber, que a pesar de sus dificultades físicas le hacía caminar cada día una hora por las calles de Bruselas hasta llegar exhausto a su despacho.

____

Manuel de León (CSIC, Fundador del ICMAT, Real Academia de Ciencias, Real Academia Canaria de Ciencias, ICSU).

Guardar

Etiquetas: , ,
Categorias: General

Los tiburones de Vito Volterra

Umberto D´Ancona (1896 –1964) fue un biólogo italiano, nacido en Fiume el 9 de mayo de 1896. Comenzó sus estudio de Biología en Budapest, pero fueron interrumpidos por el estallido de la Primera Guerra Mundial. D´Ancona destacó por su valor militar y fue condecorado, retomando sus estudios en la Universidad de Roma.

Vito Volterra y Umberto D´Ancona

A mediados de los años 1920 D’Ancona estudiaba las poblaciones de peces en el mar Adriático, tomando datos en los puertos de mar que él bien conocía: en Fiume, Trieste y Venecia. Observó que durante la guerra, el porcentaje de tiburones y depredadores similares había aumentado, lo que entendía, ya que al reducirse la pesca de sardinas, jureles, etc. por parte de los pescadores, estos aumentaban y por lo tanto los peces grandes también lo hacían. Pero la pregunta que se hacía era: ¿cómo afectaba esta reducción de la pesca a los peces pequeños? El porcentaje no aumentaba, sino que disminuía.

Por aquel entonces, D´Ancona cortejaba a Luisa Volterra, con la que contrajo matrimonio en 1926, y que era hija del famoso matemático Vito Volterra (1860 – 1940), nada menos que cuatro veces conferenciante invitado en un Congreso Internacional de Matemáticos. D´Ancona consultó el problema a su futuro suegro, y esta consulta condujo a desarrollar el llamadao modelo de predador-presa de Lotka-Volterra.

Alfred J. Lotka

El coautor de ese modelo es el matemático y químico norteamericano Alfred James Lotka, quién trabajó de manera independiente a Volterra y simultáneamente llegó a los mismos resultados.

Podemos buscar los antecedentes en los trabajos del clérigo británico Thomas Robert Malthus (1766-1834), quién en su libro de 1798, Ensayo sobre el principio de la población (An Essay on the Principle of Population), reeditado y ampliado en 1803, plantea el problema del crecimiento geométrico de la población contra el aritmético de los recursos alimenticios.

Pierre Francois Verhulst

Después de haber leído el “Ensayo sobre el principio de población” de Thomas Malthus, el matemático belga Pierre François Verhulst (1804-1849) en 1838, obtiene la ecuación logística para describir el crecimiento auto-limitado de una población biológica. Es precisamente Alfred J. Lotka quien deduce de nuevo la ecuación en 1925, llamándola “ley del crecimiento poblacional”. Esta es la ecuación logística:

donde P representa el tamaño de la población, t el tiempo, r es la tasa de crecimiento y K la capacidad de persistencia.

Las ecuaciones de Lotka-Volterra describen la evolución de un sistema en el que coexisten una especie de predadores y una de presas, y se escriben así:

donde x es el número de presas, y es el número de predadores, dy/dt y dx/dt representa la tasa de crecimiento de cada una de las poblaciones, t es el tiempo, y α, β, γ, δ son parámetros. En la primera ecuación, la población va aumentando pero el segundo término resta las desapariciones por la acción del predador. En la segunda, se ve la variación de predadores por la caza de presas menos la muerte natural de estos.

Tanto la ecuación logística como las ecuaciones de Lotka-Volterra, se usan en muchos ámbitos, no sólo para estudiar problemas de dinámica de poblaciones. Sobre estos temas volveremos en Matemáticas y sus fronteras, aprovechando la ocasión que ofrece el Año Internacional de la Biología Matemática.

_______

Manuel de León (CSIC, Fundador y Director del ICMAT, Real Academia de Ciencias, Real Academia Canaria de Ciencias, ICSU).

Etiquetas: , ,
Categorias: General