La máquina de Galton

Siempre que puedas, cuenta

Sir Francis Galton

No es la primera vez que Francis Galton se asoma a Matemáticas y sus fronteras. En El matemático que quiso medir la inteligencia hablamos de sus estudios sociológicos y antropológicos  , y en La extinción de los apellidos entre la aristocracia victoriana y el número R sobre el ahora famoso número R en el caso de la transmisión vertical. Pero hoy nos centraremos en uno de sus diseños, la llamada máquina de Galton.

 

Galton nació en Birmingham, el 16 de febrero de 1822, y falleció en Haslemere, Surrey, el 17 de enero de 1911).  Se le puede calificar de polímata, porque sus intereses y actividades fueron de lo más variado y abarcaban la estadística, la sociología, la psicología, antropología, geografía, y muchas más cosas.

Galton fue pionero en la aplicación de los métodos estadísticos a las ciencias sociales y a la medicina, también a la meteorología. En realidad, fue por esas aplicaciones por lo que Galton se dedicó a estudiar la estadística. En las citadas entradas previas podemos encontrar muchos más detalles.

Sir Francis Galton

En Estadística nos interesa conocer los valores medios y como las mediciones se dispersan en torno a estos. A finales de 1860, Galton fue capaz de proponer la llamada desviación estándar. En su estudio de la distribución normal, Galton inventó una máquina que se llamó la Máquina (o Tablero) de Galton. Su objetivo era demostrar el teorema del límite central, en particular que, con una muestra lo suficientemente grande, la distribución binomial se aproxima a la distribución normal. Como comentamos, su curiosidad era conocer por qué ciertas características humanas, como la altura, en lugar de variar aleatoriamente dentro de una población, parecían variar dentro de una cierta estructura, una distribución normal. Galton quería precisamente era proporcionar una demostración práctica de por qué ocurre este hecho (aparte, por supuesto, de la demostración matemática, basada en el Teorema Central del Límite).

 

Diseño original de Galton

El Tablero de Galton consiste en un tablero vertical en el que se van intercalando filas de clavijas tal y como se muestra en la imagen. Ahora vamos dejando caer desde arriba cuentas o bolitas que van rebotando en las clavijas. Al golpearlas, pueden rebotar a la izquierda o hacia la derecha. Las cuentas acaban agrupándose en los recipientes de la base del tablero, y uno observa como las alturas de las columnas se aproxima a la curva de campana. La razón de esto es que hay muchas más formas de llegar a estos contenedores centrales que a los extremos. En efecto, aunque la probabilidad de ir a un lado o a otro es de ½, hay más maneras de irse hacia el centro que hacia los lados.

La fascinanción de Galton por la curva de campana queda de manifiesto en su libro Herencia Natural, publicado en 1889:

Orden en el Caos Aparente: Sé de casi nada tan apto para impresionar la imaginación como la maravillosa forma de orden cósmico expresada por la Ley de la Frecuencia del Error. La ley habría sido personificada por los griegos y deificada, si hubieran sabido de ella. Reina con serenidad y en completo olvido en medio de la más salvaje confusión. Cuanto más grande es la multitud, y cuanto más grande es la anarquía aparente, más perfecto es su dominio. Es la ley suprema de la irracionalidad. Cada vez que una gran muestra de elementos caóticos son tomados en mano y reunidos en el orden de su magnitud, una insospechada y más bella forma de regularidad demuestra haber estado latente todo el tiempo.

___________

Manuel de León (CSIC, Fundador del ICMAT, Real Academia de Ciencias, Real Academia Canaria de Ciencias, Real Academia Galega de Ciencias).

Compartir:

6 comentarios

  1. El Tablero de Galton consiste en un tablero vertical en el que se van intercalando filas de clavijas tal y como se muestra en la imagen. Ahora vamos dejando caer desde arriba cuentas o bolitas que van rebotando en las clavijas. Al golpearlas, pueden rebotar a la izquierda o hacia la derecha. Las cuentas acaban agrupándose en los recipientes de la base del tablero, y uno observa como las alturas de las columnas se aproxima a la curva de campana. La razón de esto es que hay muchas más formas de llegar a estos contenedores centrales que a los extremos. En efecto, aunque la probabilidad de ir a un lado o a otro es de ½, hay más maneras de irse hacia el centro que hacia los lados.

  2. que mierda sirvio mas un perro que tu puto link ojala te muerassssssssssssssssssssssssssssssssssssssss perro hp gracias ahora tengo cancer de pancreas y ahora mi novia me monto cacho por este puto link (saludos no hate)

    que mierda sirvio mas un perro que tu puto link ojala te muerassssssssssssssssssssssssssssssssssssssss perro hp gracias ahora tengo cancer de pancreas y ahora mi novia me monto cacho por este puto link (saludos no hate)

    no hate saludos

Deja un comentario