El paraíso de Cantor

Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben können. Nadie será capaz de expulsarnos del paraíso que Cantor creó para nosotros. David Hilbert, en una conferencia en Münster a la Sociedad Matemática Alemana el 4 de junio de 1925.   Georg Ferdinand Ludwig Philipp Cantor fue un matemático de ascendencia danesa-alemana, aunque nació en San Petersburgo, el 3 de marzo de 1845: Cantor fue uno de los matemáticos más geniales del siglo XIX y comienzos del XX,…

Seguir leyendo >>

Cinco puntos definen una cónica

Seguimos con nuestro repaso por el mundo de las cónicas y hoy hablaremos de otro de los hitos en su estudio, el Teorema de los cinco puntos, que afirma que cinco puntos de un plano son suficientes para construir una cónica. Afinando más, 3 de esos puntos no pueden ser colineales, porque entonces el resultado sería una cónica degenerada y podría no ser única. La razón para este resultado es muy simple si consideramos la ecuación general de una cónica:…

Seguir leyendo >>

La extinción de los apellidos entre la aristocracia victoriana y el número R

En la segunda mitad del siglo XIX surgió una curiosa preocupación entre la aristocracia victoriana sobre la posible extinción de sus apellidos. Para entender el problema, comencemos recordando que esos apellidos se transmitían desde el padre (no madre) a los hijos, tanto varones como hembras, pero luego eran sólo los hijos varones quienes los volvían a transmitir. Una representación esquemática de la transmisión de apellidos siguiendo la línea masculina. Sólo los hijos varones transmiten el apellido. Esta preocupación tuvo eco…

Seguir leyendo >>

El Hexagrammum Mysticum

El estudio de las cónicas, que se extiende a más de dos milenios, ofrece episodios matemáticos de una gran belleza, que en algunos casos se acerca al misticismo. Uno de los teoremas más excitantes en ese sentido es el llamado Teorema de Pascal, denominado a veces el Teorema del Hexagrama Místico.   El Teorema de Pascal dice lo siguiente: Si un hexágono arbitrario ABCDEF se encuentra inscrito en una cónica, y se prolongan los pares de lados opuestos hasta que…

Seguir leyendo >>

Nicanor Parra, matemático, físico y antipoeta

Qué es el hombre se pregunta Pascal: Una potencia de exponente cero. Nada si se compara con el todo Todo si se compara con la nada: Nacimiento más muerte: Ruido multiplicado por silencio: Medio aritmético entre el todo y la nada. Nicanor Parra: “Pensamientos”   Leyendo el extraordinario libro de Leila Guerriero, “Plano americano”, un panorama de la vida cultural en Latinoamerica a través de 26 perfiles biográficos, me encuentro de nuevo con un poeta fuera de lo común, Nicanor…

Seguir leyendo >>

Sopa de letras: Más allá del modelo SIR

En entradas anteriores hemos hablado del modelo SIR y de su exitosa trayectoria desde sus orígenes. Por eso, no es de extrañar que un siglo después siga siendo el modelo de referencia en Epidemiología Matemática. No obstante, siguiendo la máxima pragmática, un modelo es tan bueno como su capacidad para ser útil. En este sentido, algunas objeciones al modelo SIR han impulsado el desarrollo de variantes que describiremos en este artículo y aproximaciones alternativas, como las variantes estocásticas o los…

Seguir leyendo >>

Adiós a John Horton Conway, el matemático que jugaba

“.. Consigues números surrealistas jugando. Solía sentirme culpable en Cambridge de haber pasado todo el día jugando, mientras se suponía que estaba haciendo matemáticas. Entonces, cuando descubrí números surrealistas, me di cuenta de que jugar a juegos ES matemáticas.” John H. Conway   El pasado 11 de abril conocimos el fallecimiento en Princeton por coronavirus de uno de los matemáticos más queridos y carismáticos de nuestra comunidad internacional. En un artículo de Siobhan Roberts, en The Guardian, el 23 de…

Seguir leyendo >>

La conjetura abc de nuevo en cuestión

No es la primera vez que escribimos sobre la llamada conjetura abc, y me temo que no será la última. La prueba de la misma no está todavía admitida por la comunidad, pero el autor de la supuesta prueba, el matemático japonés Shinichi Mochizuki, ha dado una vuelta de tuerca al tema, que incide además de pleno en la ética de las publicaciones matemáticas.   Recordemos lo que dice esta famosa conjetura. Enunciada por Joseph Oesterlé y David Masser en…

Seguir leyendo >>

El aspecto del enemigo: el Covid-19

“Un virus es simplemente una mala noticia envuelta en proteínas.” Jean y Peter Medawar, biólogos, 1977   Con el Covid-19 nos encontramos ante una amenaza no tan desconocida, que ya nos ha tocado combatir y que no será la última en poner en peligro nuestra forma actual de vida. A pesar de la incertidumbre ante Covid-19, conocemos al enemigo bastante más que los atenienses o los europeos de la Edad Media. Aunque las enfermedades causadas por virus han azotado la…

Seguir leyendo >>

Las matemáticas contra la malaria y el modelo SIR

This day relenting God Hath placed within my hand A wondrous thing; and God Be praised. At His command, Seeking His secret deeds With tears and toiling breath, I find thy cunning seeds, O million-murdering Death. I know this little thing A myriad men will save. O Death, where is thy sting? Thy victory, O Grave? Poema de Ronald Ross para celebrar su descubrimiento   En nuestra entrada Las matemáticas del coronavirus Covid-19 presentamos el modelo SIR de epidemias como…

Seguir leyendo >>